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Abstract

Deploying multiple Virtual Machines (VMs) running various types of
workloads on current many-core cloud computing infrastructures raises
an important issue: The Virtual Machine Monitor (VMM) has to effi-
ciently multiplex VM accesses to the hardware. We argue that altering
the scheduling concept can optimize the system’s overall performance.

Currently, the Xen VMM achieves near native performance multiplexing
VMs with homogeneous workloads. Yet having a mixture of VMs with
different types of workloads running concurrently, it leads to poor I/O
performance. Taking into account the complexity of the design and im-
plementation of a universal scheduler, let alone the probability of being
fruitless, we focus on a system with multiple scheduling policies that co-
exist and service VMs according to their workload characteristics. Thus,
VMs can benefit from various schedulers, either existing or new, that are
optimal for each specific case.

In this paper, we design a framework that provides three basic coex-
isting scheduling policies and implement it in the Xen paravirtualized
environment. Evaluating our prototype we experience 2.3 times faster
I/O service and link saturation, while the CPU-intensive VMs achieve
more than 80% of current performance.

Keywords Paravirtualization, Service-oriented VM containers, I/O,
Resources Utilization, Multi-Core Platforms, Scheduling, SMP, Multi-
ple GigaBit NICs.
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Chapter 1

Introduction

1.1 Virtualization: Virtues and Features

Currently, modern technology, features powerful platforms that can be
grouped together with high–performance interconnects and provide HPC
infrastructures that are necessary mostly for scientific applications which
require great computing power. On the other hand, these infrastructures
can be used in terms of Cloud Computing where more service oriented
requirements take place. The system is considered as a black box, that
should offer the QoS requested. For instance a client can ask for a sys-
tem with 4 CPUs, 4GB Memory, 1Gbps NIC. To dedicate such a ma-
chine to a modern multi-core platform would be a waste of resources.
To find one that fulfill these requirements would be impractical. Here
intervenes the Virtualization. It allows the co-existence of multiple ma-
chine instances in a single container, while guaranteeing isolation and
security. Machines with limited demands can run concurrently utilizing
the systems resources more efficiently and trying to make the most of
them. Moreover, the ability to create and destroy instances of machines
on demand, live adding or removing resources, live migration for load
balancing, easier charge of service providing are the predominant reasons
why virtualization is attractive and desirable.

There are numerous virtualization platforms that have been designed
the past few years 1. Among them most common are VMware ESX,
KVM with QEMU, and Xen. The first two affiliate the principles of
full Virtualization while the latter adopts the ParaVirtualization scheme.
Both have their pros and cons: Synoptically, Full– allows unmodified OS

1http://en.wikipedia.org/wiki/Comparison of platform virtual machines
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I/O and Scheduling in a Virtualized Environment

to run but introduces overhead while emulating the exported hardware to
the VM; Para– runs a virtualization–aware kernel but is more lightweight
that the other way.

1.2 I/O and Scheduling in a Virtualized

Environment

Recent advances in virtualization technology have minimized overheads
associated with CPU sharing when every vCPU is assigned to a physical
core. As a result, CPU–bound applications achieve near-native perfor-
mance when deployed in VM environments. However, I/O is a completely
different story: intermediate virtualization layers impose significant over-
heads when multiple VMs share network or storage devices. Numerous
studies present significant optimizations on the network I/O stack using
software or hardware approaches.

These studies attack the HPC case, where no CPU over-commitment
occurs. However, in service-oriented setups, vCPUs that belong to a
vast number of VMs and run different types of workloads, need to be
multiplexed. In such a case, scheduling plays an important role.

Just like the OS has to multiplex processes and tries to offer a fair time–
sharing among them, the VMM must be able to multiplex numerous
VMs and provide them a time–slice to eventually execute their applica-
tions. The optimal scheduling policy should provide the desired Quality
of Service to each VM while trying to fully utilize the host resources.

1.3 Motivation

Currently, the Xen VMM with the Credit scheduler does a good job
in time-sharing of VM with similar CPU–intensive workloads. But in
case of VMs with different workloads running concurrently, I/O gets ne-
glected mostly because of the Credit’s algorithm and of the fact that
in ParaVirtualization techniques, not only the VM making the I/O par-
ticipates in the transaction. Specifically, both this VM and the driver
domain need to be scheduled in so that the VM can communicate with
the rest of the world. Additionally VMs that coexist in a VM container
usually run various applications that have different characteristics. CPU–
bound, Memory–bound, random I/O, heavy I/O, low latency, real-time
applications, etc. Taking into account the complexity of the design and

2



Thesis Contributions

implementation of a universal scheduler, let alone the probability such
an attempt to be fruitless, we focus on a system with multiple scheduling
policies that coexist and service VMs according to their workload charac-
teristics. Thus, VMs can benefit from various schedulers, either existing
or new, that are optimal for each specific case.

1.4 Thesis Contributions

Scheduling Concept The main contribution of this work is the eval-
uation of the scheduling concept where different scheduling policies co–
exist and contradicting VMs are decoupled from each other and VMs
with similar workload characteristics are multiplexed by the correspond-
ing policy which is tailored to their needs. With our framework we take
the first step towards this concept and divide the VMs in two different
types; CPU– and I/O– intensive VMs. Implementing this in the Par-
aVirtualized environment of Xen VMM we point out how I/O VMs can
benefit from the isolation provided. We experience network link satu-
ration in contrast to less than 40% utilization of the current case. On
the other hand, CPU operations sustained more than 80% of default
performance.

Monitoring Tool In a ParaVirtualized I/O path, as mentioned ear-
lier, participate not only the VM that makes the I/O operation but the
driver domain as well. So this is the part where the scheduler interferes.
To explore the time lost between the actual moments each domain gets
scheduled in an serves the I/O request, we build a monitoring tool that
traces down the transactions carried out between these domains. It is
build on top of Xen’s event channel mechanism based on wall clock time-
stamps. It is a helpful tool that can be triggered on demand while adding
negligible overhead. Eventually data are processed and the average msec
lost per MB transmitted is calculated.

SMP aware no-op Scheduler In order to decouple the driver domain
from the other domains, we take advantage the modular implementation
of Xen’s scheduling, and build a primitive ,,no-op” SMP-aware scheduler
that bounds every newly created vCPU to an available physical core,
if any, without preempting it and so avoiding any context switch and
frequent scheduling calls. This scheduler can apply to any domain with
any number of vCPUs.

3



Thesis Contributions

Credit Scheduler Optimization for I/O service We evaluate the
benefit I/O domains can gain when the time–slice offered by the scheduler
gets decreased from 30ms to 3ms, and how it gets affected depending of
the type of I/O (random / heavy) and the size of packets transmitted.

An anticipatory scheduling concept proposal To take advantage
the high probability, that an I/O operation follows another in the near
future, we propose an anticipatory scheduling concept based on the cur-
rent scheduling algorithm and implemented with multi-hierarchical pri-
ority set that lets the VM sustain for a bit longer the boost state and be
temporarily favored among others.

A profiling mechanism proposal After having proved that the co-
existing scheduling policies can benefit I/O performance and resources
utilization we have to examine how such a scenario can be automated
or adaptive. How to implement the VM classification and the resources
partitioning? Upon this we consider the following design dilemma; the
profiling tool should reside in the driver domain or in the Hypervisor?
The former is aware of the I/O characteristics of each VM while the
latter can keep track of their time-slice utilization. Either way such a
mechanism should be lightweight and its actions should respond to the
average load of the VM and not to random spikes.

4



Chapter 2

Background

In this work we address the way the hypervisor in a virtualized environ-
ment affects the I/O performance of Virtual Machines and the overall
resources utilization. Specifically we choose to focus on the scheduling
mechanism the hypervisor uses to multiplex the Virtual CPUs in order to
provide them a timeslice to run. To this end in this chapter we are going
to mention the components that participate in our study. Specifically we
give the big picture about virtualization, we refer to some hardware de-
tails including the features modern platforms provide , how the operating
system takes advantage of them, and how they are eventually exported in
a virtualized environment. We mention the different ways of virtualiza-
tion techniques, how QEMU, KVM and Xen address the challenges that
arrise and conclude with some implementation details regarding Xen and
Linux internals needed for the understanding of this work.

2.1 Basic Platform Components

Figure 2.1 depicts a generic Intel platform. In the following subsections
we will refer to the system components our work deals with so that the
rest it can be more understandable.

2.1.1 Core Components

CPU

Every architecture suports a set of intructions (ISA). The final code that
is to be executed on metal is a series of these instructions. How this

5



Basic Platform Components

Figure 2.1: Motherboard Schematic

code (source code ⇒ compiler ⇒ linker ⇒ assembler ⇒ binary code) is
produced is out of the scope of this work.

The CPU is responsible for executing binary code streams, i.e. instruc-
tions belonging to its ISA. ISA includes a special set of privileged in-
structions (Table 2.1). The CPU itself features different privilege levels
(Privilege Rings 0-3). Specifically in every execution context the CPU
is set to a privilege level (CPL) and in case it tries to execute a more
privileged instruction a General Protection (GP) Fault gets raised. To
overcome this a system call must be invoked instead, which is done via
call gates in hardware level.

CPL is found in the CS register - descriptor selector (which points to
a segment descriptor and eventually to a memory segment where the
actual code is located). We will get more into this in the following section
discussing memory virtualization.

The important thing is that during bootstrap the kernel code is set to
be in the highest privilege level and is the one who can determine the
privileges of the rest execution codes (processes). To this end it is used
to say that the kernel resides in the inner privilege ring while the rest
(user processes etc.) reside in the outer ring.

Some other instructions like IN and OUT require a lower privilege level

6



Basic Platform Components

Privileged Level Instructions
Instruction Description
LGDT Loads an address of a GDT into GDTR
LLDT Loads an address of a LDT into LDTR
MOV Control Register Copy data and store in Control Registers
INVD Invalidate Cache without writeback
INVLPG Invalidate TLB Entry
RDTSC Read time Stamp Counter

Table 2.1: Subset of Privileged Instructions

but still user mode code cannot execute them. This kind of instructions
usually are needed by device drivers, therefor it is used to say that de-
vice drivers reside in the middle privilege rings, between kernel and user
processes.

The transition from user level to kernel level is done via call gates and
invoking system calls. This means that the kernel, who has the ultimate
privilege will service the user process demand without letting it interfere
in system level components (page tables, control registers, memory, etc.)
and compromizing system security and isolation between other processes.
That means that the kernel acts like a supervisor who multiplexes the
hardware accesses of the multiple processes running concurrently in a
Computing System (one OS + many applications).

MMU

The main memory (DRAM) exports a continuous address space to the
system. Every access to the memory cells is done via the physical ad-
dress. CPU is unaware of the physical memory arrangement. It references
logical (virtual) addresses. Logical addresses are included in machine
language instruction (generated by compilers) and consist of a segment
and an offset. The Memory Management Unit (MMU) is responsible for
virtual-to-physical transalation. Specifically it includes:

• A segmentation unit that translates logical into linear.

• A paging unit that translates linear into physical.

• A radix tree ,the page table, encoding the virtual-to-physical trans-
lation. This tree is provided by system software on physical mem-
ory, but is rooted in a hardware register (the CR3 register)

7
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• A mechanism to notify system software of missing translations
(page faults)

• An on-chip cache (the translation lookaside buffer, or TLB) that
accelerates lookups of the page table

• Instructions for switching the translation root in order to provide
independent address spaces

• Instructions for managing the TLB

Modern commodity hardware provide hardware support for page table
walk. The OS needs to load the CR3 with the physical address of the
root page directory and every linear to physical translation is done by
page walker.

Figure 2.2 shows a system-level architecture overview and specifically the
registers state and memory structs an OS has to keep up to date.

System Bus

The system bus (Front Side Bus) connects the CPU to the rest of compo-
nents. Addresses (physical addresses calculated by the MMU) and data
related to the CPU are passed over the system bus.

2.1.2 Device Related Components

APIC

Advanced Programmable Interupt Controller is a component that multi-
plexes all external interupts (originated from the devices) and propagates
them to the CPU interupt pin. It lets the CPU know where the interupt
came from by writing the corresponding vector in a special register. De-
pending on that the OS looks up the Interrupt Descriptor Table and finds
the proper Interupt Service Routing to execute (that acknowlegdes the
interrupt, defers the actual handler who propably does DMA and exits).

North Bridge

The North Bridge (Memory Controller Hub) is the system’s component
that brings high-speed hardware together. Specifically, then north brigde
is connects CPUs (via FSB), DRAM (via Memory Bus), PCIe (via PCIe

8
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Figure 2.2: System-level IA-32 architecture overview

9



Basic Platform Components

Root Ports), and South Bridge (via internal bus). It is responsible for
all the logic that results to correct accesses. In example when the CPU
references an address that its memory is mapped to a PCI configuration
space it should not access the main memory but the corresponding PCI
address space.

PCI express Conceptually, the PCIe bus is like a high-speed serial re-
placement of the older PCI/PCI-X bus, an interconnect bus using shared
address/data lines. During device detection, PCI configuration space
(registers and memory of the device) get mapped to physical address
space (memory mapped I/O). This addresses get mapped to kernel vir-
tual address space by the OS. From this point the CPU can reference
these virtual addresses and get access to the device registers.

South Brigde The South Bridge (I/O controller Bus) brings low-speed
hardware together such as PCI, USB, ISA, IDE, BIOS and other legacy
devices. This is out of the scope of this work so we wont get into details.

IOMMU An input/output memory management unit (IOMMU) is a
memory management unit (MMU) that connects a DMA-capable I/O bus
to the main memory. Like a traditional MMU, which translates CPU-
visible virtual addresses to physical addresses, the IOMMU takes care
of mapping device-visible virtual addresses (also called device addresses
or I/O addresses in this context) to physical addresses. An example
IOMMU is the graphics address remapping table (GART) used by AGP
and PCI Express graphics cards.

The advantages of having an IOMMU, compared to direct physical ad-
dressing of the memory, include:

• Large regions of memory can be allocated without the need to
be contiguous in physical memory the IOMMU will take care of
mapping contiguous virtual addresses to the underlying fragmented
physical addresses. Thus, the use of vectored I/O (scatter-gather
lists) can sometimes be avoided.

• For devices that do not support memory addresses long enough
to address the entire physical memory, the device can still address
the entire memory through the IOMMU. This avoids overhead as-
sociated with copying buffers to and from the memory space the
peripheral can address.

10
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• Memory protection from malicious or misbehaving devices: a de-
vice cannot read or write to memory that hasn’t been explicitly
allocated (mapped) for it.

• With virtualization, guest operating systems can use hardware that
is not specifically made for virtualization. Higher performance
hardware such as graphics cards use DMA to access memory di-
rectly; in a virtual environment all the memory addresses are remapped
by the virtual machine software, which causes DMA devices to fail.
The IOMMU handles this remapping, allowing for the native device
drivers to be used in a guest operating system.

• In some architectures IOMMU also performs hardware interrupt
remapping, in a manner similar to standard memory address remap-
ping.

2.2 What is Virtualization?

With Virtualization basicaly a system pretends to be more of the same
system. It must not be confused with emulation where a system pretends
to be another one.

One can argue that modern operating systems feature some sort of virtu-
alization; each process is not aware of other running and can access the
resources (CPU, memory, devices) as it was alone in the system. So from
the process’s point of view it feels having a dedicated system serving its
demands. This to apply, certain mechanisms take place: processes are
allowed to run on the CPU and eventually get preempted according to
the scheduling policy; they have the illusion of flat memory address space
(virtual memory); they can use the sockets API to access a network de-
vice without having to worry about other applications sharing the same
device.

In terms of Virtualization, whole machines (resources, OS and applica-
tions) are considered by the Virtualization platform as processes are by
the OS. They should not be aware of co-existing machines and isolation
and fairness among them should be guaranteed.

CPU Virtualization

Virtualizing a CPU is, to some extent, very easy. A process runs with
exclusive use of it for a while, and is then interrupted. The CPU state

12
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is then saved, and another process runs. After a while, this process is
repeated.

This process typically occurs every 10ms or so in a modern operating sys-
tem. It is worth noting, however, that the virtual CPU and the physical
CPU are not identical. When the operating system is running, swapping
processes, the CPU runs in a privileged mode. This allows certain opera-
tions, such as access to memory by physical address, that are not usually
permitted. For a CPU to be completely virtualized, Popek and Goldberg
in [1] put forward a set of requirements that must be met. They began
by dividing instructions into three categories:

Privileged instructions are defined as those that may execute in a
privileged mode, but will trap if executed outside this mode.

Control sensitive instructions are those that attempt to change the
configuration of resources in the system, such as updating virtual
to physical memory mappings, communicating with devices, or ma-
nipulating global configuration registers.

Behavior sensitive instructions are those that behave in a different
way depending on the configuration of resources, including all load
and store operations that act on virtual memory.

In order for an architecture to be virtualizable all sensitive instructions
must also be privileged instructions. Intuitively, this means that a hy-
pervisor must be able to intercept any instructions that change the state
of the machine in a way that impacts other processes.

I/O Virtualization

An operating system requires more than a CPU to run; it also depends
on main memory, and a set of devices. Virtualizing memory is relatively
easy; it can just be partitioned and every privileged instruction that
accesses physical memory trapped and replaced with one that maps to
the permitted range. MMU performs these translations, typically based
on information provided by an operating system.

On the other hand most other devices are not designed with virtualization
in mind, thus supporting virtualization could be more compicated. When
an operating system is running inside a virtual machine, it does not
usually know the host-physical addresses of memory that it accesses.
This makes providing direct access to the computer hardware difficult,

13
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because if the guest OS tried to instruct the hardware to perform a
direct memory access (DMA) using guest-physical addresses, it would
likely corrupt the memory, as the hardware does not know about the
mapping between the guest-physical and host-physical addresses for the
given virtual machine. The corruption is avoided because the hypervisor
or host OS intervenes in the I/O operation to apply the translations;
unfortunately, this delays the I/O operation.

IOMMU can solve this problem by re-mapping the addresses accessed by
the hardware according to the same (or a compatible) translation table
that is used to map guest-physical address to host-physical addresses.

2.2.1 Why Virtualize?

The basic motivation for virtualization is the same as that for multitask-
ing operating systems; computers have more processing power than one
task needs. As so vitrualization made it possible to take advantage of
unused computing resources the modern platforms can provide.

Virtualization allows a number of virtual servers to be consolidated into
a single physical machine, without losing the security gained by hav-
ing completely isolated environments. It allows providers to supply cus-
tomers their own virtual machines with desired requirements without
demanding new physical machine taking up rack space in the data cen-
ter.

A virtual machine gets certain features, like cloning, at a very low cost.

Another big advantage is migration. A virtual machine can be migrated
to another host if the hardware begins to experience faults, or if an
upgrade is scheduled. It can then be migrated back when the original
machine is working again.

Power usage also makes virtualization attractive. An idle server still con-
sumes power. Consolidating a number of servers into virtual machines
running on a smaller number of hosts can reduce power costs consider-
ably. A virtual machine is more portable than a physical one. One can
save the state of a virtual machine onto a USB flash drive, transport it
easily and then just plug it in and restore.

Finally, a virtual machine provides a much greater degree of isolation
than a process in an operating system. This makes it possible to create
virtual appliances: virtual machines that just provide a single service to
a network. A virtual appliance, unlike its physical counterpart, doesnt
take up any space, and can be easily duplicated and run on more nodes
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if it is too heavily loaded (or just allocated more runtime on a large
machine).

2.2.2 Known Virtualization Techniques

Although x86 is difficult to virtualize, it is also a very attractive target,
because it is so widespread. A few solutions that overcome its limitations
have been proposed.

Binary Rewriting

One approach, popularized by VMWare, is binary rewriting. This has
the nice benefit that it allows most of the virtual environment to run in
userspace, but imposes a performance penalty.

The binary rewriting approach requires that the instruction stream be
scanned by the virtualization environment and privileged instructions
identified. These are then rewritten to point to their emulated versions.

Performance from this approach is not ideal, particularly when doing
anything I/O intensive. Aggressive caching of the locations of unsafe
instructions can give a speed boost, but this comes at the expense of
memory usage. Performance is typically between 80-97% that of the
host machine, with worse performance in code segments high in privileged
instructions.

A virtualization environment that uses this technique is implemented
like a debugger. It inserts breakpoints on any jump and on any unsafe
instruction. When it gets to a jump, the instruction stream reader needs
to quickly scan the next part for unsafe instructions and mark them.
When it reaches an unsafe instruction, it has to emulate it.

Paravirtualization

Paravirtualization systems like Xen rather than dealing with problematic
instructions, simply ignore them.

If a guest system executes an instruction that doesnt trap , then the
guest has to deal with the consequences. Conceptually, this is similar
to the binary rewriting approach, except that the rewriting happens at
compile time (or design time), rather than at runtime. The environment
presented to a Xen guest is not quite the same as that of a real x86
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system. It is sufficiently similar, however, in that it is usually a fairly
simple task to port an operating system to Xen.

From the perspective of an operating system, the biggest difference is that
it runs in ring 1 on a Xen system, instead of ring 0. This means that it
cannot perform any privileged instructions. In order to provide similar
functionality, the hypervisor exposes a set of hypercalls that correspond
to the instructions.

A hypercall is conceptually similar to a system call . An obsolete imple-
mentation is using interrupt 80h for system calls and 82h for hypercalls.
Currently hypercalls are issued via an extra layer of indirection. The
guest kernel calls a function in a shared memory page (mapped by the
hypervisor) with the arguments passed in registers. This allows more
efficient mechanisms to be used for hypercalls on systems that support
them, without requiring the guest kernel to be recompiled for every mi-
nor variation in architecture. Newer chips from AMD and Intel provide
mechanisms for fast transitions to and from ring 0. This layer of indirec-
tion allows these to be used when available.

Hardware Assisted Virtualization

x86 hardware is notoriously difficult to virtualize. Some instructions
that expose privileged state do not trap when executed in user mode,
e.g. popf. Some privileged state is difficult to hide, e.g. the current
privilege level, or cpl.

Now, both Intel and AMD have added a set of instructions that makes
virtualization considerably easier for x86. AMD introduced AMD-V,
formerly known as Pacifica, whereas Intels extensions are known simply
as (Intel) Virtualization Technology (IVT or VT). The idea behind these
is to extend the x86 ISA to make up for the shortcomings in the existing
instruction set.

Summarily the virtualization extensions support:

• A new guest operating mode the processor can switch into a guest
mode, which has all the regular privilege levels of the normal op-
erating modes, except that system software can selectively request
that certain instructions, or certain register accesses, be trapped.

• Hardware state switch when switching to guest mode and back,
the hardware switches the control registers that affect processor
operation modes, as well as the segment registers that are difficult
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to switch, and the instruction pointer so that a control transfer can
take effect.

• Exit reason reporting when a switch from guest mode back to host
mode occurs, the hardware reports the reason for the switch so that
software can take the appropriate action.

2.2.3 Which to choose and why?

In some cases, hardware virtualization is much faster than doing it in
software. In other cases, it can be slower. Programs such as VMWare now
use a hybrid approach, where a few things are offloaded to the hardware,
but the rest is still done in software.

When compared to paravirtualization, hardware assisted virtualization,
often referred to as HVM (Hardware Virtual Machine), offers some trade-
offs. It allows the running of unmodified operating systems. This can be
particularly useful, because one use for virtualization is running legacy
systems for which the source code may not be available. The cost of this
is speed and flexibility. An unmodified guest does not know that it is
running in a virtual environment, and so cant take advantage of any of
the features of virtualization easily. In addition, it is likely to be slower
for the same reason.

Nevertheless, it is possible for a paravirtualization system to make some
use of HVM features to speed up certain operations. This hybrid vir-
tualization approach offers the best of both worlds. Some things are
faster for HVM-assisted guests, such as system calls. A guest in an
HVM environment can use the accelerated transitions to ring 0 for sys-
tem calls, because it has not been moved from ring 0 to ring 1. It can
also take advantage of hardware support for nested page tables, reduc-
ing the number of hypercalls required for virtual memory operations. A
paravirtualized guest can often perform I/O more efficiently, because it
can use lightweight interfaces to devices, rather than relying on emulated
hardware. A hybrid guest combines these advantages.

2.3 Common Virtualization Platforms

2.3.1 QEMU

QEMU [2] is a fast machine emulator using an original portable dynamic
translator. It emulates several CPUs (x86, PowerPC, ARM and Sparc)
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on several hosts (x86, PowerPC, ARM, Sparc, Alpha and MIPS). QEMU
supports full system emulation in which a complete and unmodified oper-
ating system is run in a virtual machine and Linux user mode emulation
where a Linux process compiled for one target CPU can be run on an-
other CPU.

QEMU is a machine emulator: it can run an unmodified target operating
system (such as Windows or Linux) and all its applications in a virtual
machine.

QEMU also integrates a Linux specific user mode emulator. It is a subset
of the machine emulator which runs Linux processes for one target CPU
on another CPU. It is mainly used to test the result of cross compilers
or to test the CPU emulator without having to start a complete virtual
machine.

2.3.2 KVM

After adding virtualization capabilities to a standard Linux kernel and
taking advantage of the advent of virtualization extensions of modern
hardware architecture every virtual machine under this model is a regular
Linux process scheduled by the standard Linux scheduler. Its memory is
allocated by the Linux memory allocator, with its knowledge of NUMA
and integration into the scheduler. A normal Linux process has two
modes of execution: kernel and user. kvm adds a third mode: guest
mode (which has its own kernel and user modes, but these do not interest
the hypervisor at all).

The division of labor among the different modes is:

• Guest mode: execute non-I/O guest code

• Kernel mode: switch into guest mode, and handle any exits from
guest mode due to I/O or special instructions.

• User mode: perform I/O on behalf of the guest.

KVM consists of two components:

• A device driver for managing the virtualization hardware; this
driver exposes its capabilities via a character device /dev/kvm

• A user-space component for emulating PC hardware; this is a lightly
modified qemu process
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2.3.3 Xen

Xen sits between the OS and the hardware, and provides a virtual en-
vironment in which a kernel can run. The main difference is that the
OS kernel is evicted from ring 0 and replaced by the hypervisor; in x86
OS is put in ring 1, while in x86 64 it is sharing ring 3 along with the
application.

The purpose of a hypervisor is to allow guests to be run. Xen runs
guests in environments known as domains, which encapsulate a complete
running virtual environment. When Xen boots, one of the first things
it does is load a Domain 0 (dom0) guest kernel. Domain 0 is the first
guest to run, and has elevated privileges. In contrast, other domains are
referred to as domain U (domU) - the U stands for unprivileged.

The privileged Domain

Domain 0 is very important to a Xen system. Xen does not include any
device drivers by itself, nor a user interface. These are all provided by
the operating system and userspace tools running in the dom0 guest.

The most obvious task performed by the dom0 guest is to handle devices.
This guest runs at a higher level of privilege than others, and so can
access the hardware. Part of the responsibility for handling devices is
the multiplexing of them for virtual machines and to provide each guest
with its own virtual device.

The dom0 guest is also responsible for handling administrative tasks.
While Xen itself creates new domU guests, it does so in response to a
hypercall from the dom0 guest. This is typically done via a set of Python
tools (scripts) that handles all of the policy related to guest creation in
userspace and issue the relevant hypercalls.

Domain 0 provides the user interface to the hypervisor. The two dmons
xend and xenstored running in this domain provide important features
for the system. The first is responsible for providing an administrative
interface to the hypervisor, allowing a user to define policy. The second
provides the back-end storage for the XenStore.

Unprivileged domains

An unprivileged domain (domU) guest is more restricted. A domU guest
is typically not allowed to perform any hypercalls that directly access
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hardware, although in some situations it may be granted access to one
or more devices.

Instead of directly accessing hardware, a domU guest typically imple-
ments the front end of some split device drivers. At a minimum, it is
likely to need the XenStore and console device drivers. Most also im-
plement the block and network interfaces. Because these are generic,
abstract, devices, a domU only needs to implement one driver for each
device category.

2.4 Virtualization Issues

In this section we summarily refer to the issues that arrise using the sys-
tem components (mentioned earlier) in a Virualization environment and
what is needed to overcome them. Who will now multiplex the the var-
ious Computing Systems (many OS + many applications per OS) that
coexist in a Virtualized Environment? This role is assigned to the Hy-
pervisor or Virual Machine Monitor (VMM) and must provide isolation
and security among the VMs.

2.4.1 Virtualizing CPU

CPU as mentioned features a protection rings that the native operating
systems take advantage of and provide security between kernel and user
space and isolation between processes. This is not the case and will not
suffice in a Virtualized Environment.

Emulation - QEMU

Emulation is one possible way to achieve a Virtualized Environment. But
how can it be achieved? Lets assume that we start an unmodified kernel
as a user process. That means that it will reside in outer privilege level
meaning that when it tries to run a privileged instruction it will cause a
General Protection Fault. Having a user level process (qemu) trapping
this exception and emulating the instruction. This of course has overhead
which leads to poor performance.
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Hardware Assisted Virtualization - KVM

With the advent of CPU vitrualization extentions (Intel VT-x and AMD-
V) CPU emulation is bypassed. But how is this achieved? Virtualization
extentions provide a set of instructions that help store and restore the
whole CPU state (when switching from one VM to another) plus imple-
ment an extra ring level (-1) that is called root mode. To this end the
guest operating system may still reside in the ring level it is designed
to run in. Transitions between root and non-root mode is done via spe-
cial instructions (VMLAUNCH, VMRESUME) or when VM violates its
privileges which is trapped by the VMM residing in ring level -1.

The community focused on how the linux kernel could play the role of
VMM. The outcome of this effort is the kvm module that takes advantage
those extensions and allows unmodified OS reside inside a native linux
system. Management of VMs is done via ioctl call on a character device
the module exposes to the host kernel.

Paravirtualization - Xen

The main idea is that the VMM is a software layer between hardware
and OS. It provides multiplexing and isolation among different VMs.
The VMM resides in most inner privilege ring (0) while VM kernels are
deprivileged to ring 1. What differs it from the cases above is that the
kernels are modified in order to reside in privilege ring 1. The hypervisor
exposes an interface (hypercalls) to the guests that is equivalent to the
system calls a native kernel exposes to applications.

2.4.2 Virtualizing Memory

In protected mode, the architectures provide a protection mechanism
that operates at both the segment level and the page level. This protec-
tion mechanism provides the ability to limit access to certain segments
or pages based on privilege levels (four privilege levels for segments and
two privilege levels for pages). For example, critical operating-system
code and data can be protected by placing them in more privileged seg-
ments than those that contain applications code. The processors pro-
tection mechanism will then prevent application code from accessing the
operating-system code and data in any but a controlled, defined manner.

The processor uses privilege levels to prevent a program or task operating
at a lesser privilege level from accessing a segment with a greater priv-

21



Virtualization Issues

ilege, except under controlled situations. When the processor detects a
privilege level violation, it generates a general-protection exception (GP).

Segments and Protection Every memory access is done via an seg-
ment selector and an offset (logical address). The selector points to a
segment descriptor located in the GDT or LDT. From the segment de-
scriptor, the processor obtains the base address of the segment in the
linear address space. The offset then provides the location of the byte
relative to the base address. This mechanism can be used to access any
valid code, data, or stack segment, provided the segment is accessible
from the current privilege level (CPL) at which the processor is operat-
ing. The CPL is defined as the protection level of the currently executing
code segment.

In order the paging mechanism to provide isolation between user and su-
pervisor code and data, four segments need to be defined: code and data
segments at privilege level 3 for the user, and code and data segments
at privilege level 0 for the supervisor. Usually these segments all overlay
each other and start at address 0x0 in the linear address space. This flat
segmentation model along with a simple paging structure can protect
the operating system from applications, and by adding a separate paging
structure for each task or process, it can also protect applications from
each other.

Code segments can be either conforming or nonconforming. A transfer
of execution into a more-privileged conforming segment allows execution
to continue at the current privilege level. A transfer into a nonconform-
ing segment at a different privilege level results in a general-protection
exception (GP), unless a call gate or task gate is used.

Execution cannot be transferred by a call or a jump to a less privileged
code segment, regardless of whether the target segment is a conforming
or nonconforming code segment. Attempting such an execution transfer
will result in a general-protection exception.

The architecture also defines two system segments the Task State Seg-
ment and LDT. The TSS defines the state of the execution environment
for a task. It includes the state of general-purpose registers, segment
registers, the EFLAGS register, the EIP register, and segment selectors
with stack pointers for three stack segments (one stack for each privilege
level). The TSS also includes the segment selector for the LDT associated
with the task and the base address of the paging structure hierarchy.

All program execution in protected mode happens within the context of
a task (called the current task). The segment selector for the TSS for
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Figure 2.4: Call Gates

the current task is stored in the task register. In switching tasks, the
processor performs the following actions:

1. Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.

3. Accesses the new TSS through a segment descriptor in the GDT.

4. Loads the state of the new task from the new TSS into the general-
purpose registers, the segment registers, the LDTR, control register
CR3 (base address of the paging-structure hierarchy), the EFLAGS
register, and the EIP register.

5. Begins execution of the new task.

Called gates (call gates, interrupt gates, trap gates, and task gates),
mentioned earlier, provide protected gateways to system procedures and
handlers that may operate at a different privilege level than application
programs and most procedures.

For example, a CALL to a call gate can provide access to a procedure in
a code segment that is at the same or a numerically lower privilege level
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(more privileged) than the current code segment. To access a procedure
through a call gate, the calling procedure supplies the selector for the
call gate. The processor then performs an access rights check on the call
gate, comparing the CPL with the privilege level of the call gate and
the destination code segment pointed to by the call gate. If access to
the destination code segment is allowed, the processor gets the segment
selector for the destination code segment and an offset into that code
segment from the call gate. If the call requires a change in privilege
level, the processor also switches to the stack for the targeted privilege
level. The segment selector for the new stack is obtained from the TSS
for the currently running task.

External interrupts, software interrupts and exceptions are handled through
the interrupt descriptor table (IDT). The IDT stores a collection of gate
descriptors that provide access to interrupt and exception handlers. The
linear address for the base of the IDT is contained in the IDT register
(IDTR).

To carry out privilege-level checks between code segments and data seg-
ments, the processor recognizes the following three types of privilege
levels:

• Current privilege level (CPL) – The CPL is the privilege level of
the currently executing program or task. It is stored in bits 0 and
1 of the CS and SS segment registers. Normally, the CPL is equal
to the privilege level of the code segment from which instructions
are being fetched.

• Descriptor privilege level (DPL) –The DPL is the privilege level of
a segment or gate. It gets compared with the CPL and the RPL of
corresponding segment selector when the currently executing code
segment attempts to access it; different types have different inter-
pretations:

– Data segment – if its DPL is 1, only programs running at a
CPL of 0 or 1 can access it.

– Nonconforming code segment (without using a call gate) – if
its DPL is 0, only programs running at a CPL of 0 can access
it

– Call gate – same as data segment.

– Conforming code segment and nonconforming code segment
(accessed through a call gate) – if its DPL is 2, programs
running at a CPL of 0 or 1 cannot access the segment.
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– TSS – same as data segment.

• Requested privilege level (RPL) – The RPL is an override privilege
level that is assigned to segment selectors. It is stored in bits 0
and 1 of the segment selector. The processor checks the RPL along
with the CPL to determine if access to a segment is allowed. The
RPL can be used to insure that privileged code does not access a
segment on behalf of an application program unless the program
itself has access privileges for that segment.

Privilege levels are checked when the segment selector of a segment de-
scriptor is loaded into a segment register. The checks used for data access
differ from those used for transfers of program control among code seg-
ments.

The privileged instructions (such as the loading of system registers) are
protected from use by application programs. They can be executed only
when the CPL is 0 (most privileged).

IOPL (in EFLAGS register) indicates the I/O privilege level of the cur-
rently running program or task. The CPL of the currently running pro-
gram or task must be less than or equal to the IOPL to access the I/O
address space. This field can only be modified by the POPF and IRET
instructions when operating at a CPL of 0.

Software Techniques

Software-based techniques maintain a shadow version of page table de-
rived from guest page table (gPT). When the guest is active, the hyper-
visor forces the processor to use the shadow page table (sPT) to perform
address translation. The sPT is not visible to the guest.

To maintain a valid sPT the hypervisor must keep track of the state of
gPT. This include modifications by the guest to add or remove translation
in the gPT, guest versus hypervisor induced page faults (defined below),
accessed and dirty bits in sPT; and for SMP guests, consistency of address
translation on processors.

Software can use various techniques to keep the sPT and gPT consistent.
One of the techniques is write-protecting the gPT. In this technique the
hypervisor write-protects all physical pages that constitute the gPT. Any
modification by the guest to add a translation results in a page fault ex-
ception. On a page fault exception, the processor control is transferred
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Figure 2.5: Guest/Shadow Page Tables
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to the hypervisor so it can emulate the operation appropriately. Sim-
ilarly, the hypervisor gets control when the guest edits gPT to remove
a translation; the hypervisor removes the translation from the gPT and
updates the sPT accordingly.

A different shadow paging technique does not write-protect gPT but in-
stead depends on processors page-fault behavior and on guest adhering
to TLB consistency rules. In this technique, sometimes referred to as
Virtual TLB, the hypervisor lets the guest add new translations to gPT
without intercepting those operations. Then later when the guest ac-
cesses an instruction or data which results in the processor referencing
memory using that translation, the processor page faults because that
translation is not present in sPT just yet. The page fault allows the
hypervisor to intervene; it inspects the gPT to add the missing trans-
lation in the sPT and executes the faulting instruction. Similarly when
the guest removes a translation, it executes INVLPG to invalidate that
translation in the TLB. The hypervisor intercepts this operation; it then
removes the corresponding translation in sPT and executes INVLPG for
the removed translation.

Both techniques result in large number of page fault exceptions. Many
page faults are caused due to normal guest behavior; such those as a
result of accessing pages that have been paged out to the storage hier-
archy by the guest operating system. We call such faults guestinduced
page faults and they must be intercepted by the hypervisor, analyzed,
and then reflected into the guest, which is a significant overhead when
compared to native paging. Page faults due to shadow paging are called
hypervisor-induced page faults. To distinguish between these two faults,
the hypervisor traverses the guest and shadow page tables, which incurs
significant software overheads.

When a guest is active, the page walker sets the accessed and dirty bits
in the sPT. But because the guest may depend on proper setting of
these bits in gPT, the hypervisor must reflect them back in the gPT. For
example, the guest may use these bits to determine which pages can be
moved to the hard disk to make room for new pages.

When the guest attempts to schedule a new process on the processor, it
updates processors CR3 register to establish the gPT corresponding to
the new process. The hypervisor must intercept this operation, invalidate
TLB entries associated with the previous CR3 value and set the real CR3
value based on the corresponding sPT for the new process. Frequent
context switches within the guest could result in significant hypervisor
overheads.
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Shadow paging can incur significant additional memory and performance
overheads with SMP guests. In an SMP guest, the same gPT instance
can be used for address translation on more than one processor. In such a
case the hypervisor must either maintain sPT instances that can be used
at each processor or share the sPT between multiple virtual processors.
The former results in high memory overheads; the latter could result in
high synchronization overheads. It is estimated that for certain workloads
shadow paging can account for up to 75% of overall hypervisor overhead
1.

QEMU The qemu process runs mostly like a normal Linux program.
It allocates its memory with normal malloc() or mmap() calls. However,
just like a normal program doing a malloc(), there is no actual physical
memory allocated at the time of the malloc(). It will not be actually
allocated until the first time it is touched.

Once the guest is running, it sees that malloc()’d memory area as being
its physical memory. If the guest’s kernel were to access what it sees as
physical address 0x0, it will see the first page of that malloc() done by
the qemu process.

After that the qemu process does all the shadow paging manipulation
discussed earlier.

Hardware Assisted Techniques

Both AMD and Intel sought solutions to these problems and came up
with similar answers called EPT and NPT. They specify a set of struc-
tures recognized by the hardware which can quickly translate guest physi-
cal addresses to host physical addresses *without* going through the host
page tables. This shortcut removes the costly two-dimensional page table
walks.

The problem with this is that the host page tables are what we use to
enforce things like process separation. If a page was to be unmapped from
the host (when it is swapped, for instance), it then we *must* coordinate
that change with these new hardware EPT/NPT structures.

AMD’s Nested Paging For example AMD adds Nested Paging to
the hardware page walker. Nested paging uses an additional or nested

1See http://developer.amd.com/assets/NPT-WP-1%201-final-TM.pdf for more in-
formation.
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page table (NPT) to translate guest physical addresses to system phys-
ical addresses and leaves the guest in complete control over its page
tables.Unlike shadow paging, once the nested pages are populated, the
hypervisor does not need to intercept and emulate guests modification of
gPT.

Nested paging removes the overheads associated with shadow paging.
However because nested paging introduces an additional level of transla-
tion, the TLB miss cost could be larger.

Under nested paging both guest and the hypervisor have their own copy
of the processor state affecting paging such as the CR0, CR3, CR4, EFER
and PAT.

The gPT maps guest linear addresses to guest physical addresses. Nested
page tables (nPT) map guest physical addresses to system physical ad-
dresses.

Guest and nested page tables are set up by the guest and hypervisor
respectively. When a guest attempts to reference memory using a linear
address and nested paging is enabled, the page walker performs a 2-
dimensional walk using the gPT and nPT to translate the guest linear
address to system physical address.

When the page walk is completed, a TLB entry containing the translation
from guest linear address to system physical address is cached in the TLB
and used on subsequent accesses to that linear address.

AMD processors supporting nested paging use the same TLB facilities to
map from linear to system physical addresses, whether the processor is
in guest or in host (or hypervisor) mode. When the processor is in guest
mode, TLB maps guest linear addresses to system physical addresses.
When processor is in host mode, the TLB maps host linear addresses to
system physical addresses.

In addition, AMD processors supporting nested paging maintain a Nested
TLB which caches guest physical to system physical translations to ac-
celerate nested page table walks. Nested TLB exploits the high locality
of guest page table structures and has a high hit rate.

Unlike shadow-paging, which requires the hypervisor to maintain an sPT
instance for each gPT, a hypervisor using nested paging can set up a sin-
gle instance of nPT to map the entire guest physical address space. Since
guest memory is compact, the nPT should typically consume consider-
ably less memory than an equivalent shadow-paging implementation.

With nested paging, the hypervisor can maintain a single instance of
nPT which can be used simultaneously at one more processor in an SMP

29



Virtualization Issues

guest. This is much more efficient than shadow paging implementations
where the hypervisor either incurs a memory overhead to maintain per
virtual processor sPT or incurs synchronization overheads resulting from
use of shared sPT.

KVM KVM as mentioned is a qemu process that takes advantage of
the Virtualization Extentions of the hardware with the corresponding
module. To this end, kvm as hypervisor does all the necessary to create
and maintain the NPT/EPT explained previously. Taking this feature
into account another issue arrises.

Host page tables are what we use to enforce things like process separa-
tion. If a page was to be unmapped from the host (when it is swapped,
for instance), it then we *must* coordinate that change with these new
hardware EPT/NPT structures.

The solution in software is something Linux calls MMU notifiers. Since
the qemu/kvm memory is normal Linux memory (from the host Linux
kernel’s perspective) the kernel may try to swap it, replace it, or even
free it just like normal memory.

But, before the pages are actually given back to the host kernel for
other use, the kvm/qemu guest is notified of the host’s intentions. The
kvm/qemu guest can then remove the page from the shadow page tables
or the NPT/EPT structures. After the kvm/qemu guest has done this,
the host kernel is then free to do what it wishes with the page.

To sum up a day in the life of a KVM physical page is: A day in the life
of a KVM guest physical page:

Fault-in path:

1. QEMU calls malloc() and allocates virtual space for the page, but
no backing physical page

2. The guest process touches what it thinks is a physical address, but
this traps into the host since the memory is unallocated

3. The host kernel sees a page fault, and allocates some memory to
back it.

4. The host kernel creates a page table entry to connect the virtual
address to a host physical address, makes rmap entries, puts it on
the LRU, etc...
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5. MMU notifier is called, which allows KVM to create an NPT/EPT
entry for the new page.

6. Host returns from page fault, guest execution resumes

Swap-out path: Now, let’s say the host is under memory pressure.
The page from above has gone through the Linux LRU and has found
itself on the inactive list. The kernel decides that it wants the page back:

1. The host kernel uses rmap structures to find out in which VMA
(vm area struct) the page is mapped.

2. The host kernel looks up the mm struct associated with that VMA,
and walks down the Linux page tables to find the host hardware
page table entry (pte t) for the page.

3. The host kernel swaps out the page and clears out the page table
entry

4. Before freeing the page, the host kernel calls the MMU notifier to
invalidate page. This looks up the page’s entry in the NPT/EPT
structures and removes it.

5. Now, any subsequent access to the page will trap into the host ((2)
in the fault-in path above)

Paravirtualization

In Paravirtualization we have modified OS so it is possible the guest
kernel to cooperate with the hypervisor who is still responsible for VM
isolation. Virtualizing memory is highly architecture dependent. For
example x86 has a hardware managed TLB; TLB misses are serviced
automatically by the processor by walking the page table structure in
hardware. Thus to achieve the best possible performance, all valid page
translations for the currnet address space should be present in hardware-
accessible page table. Another challenge is that the absence of tagged
TLB which imposes complete TLB flush when switching address spaces.

Xen Xen as mentioned is a thin software level (VMM) between hard-
ware and virtual machines. Taking x86 constraints into account, Xen
1. lets guest OSes be resposible for alocating and managing the hard-
ware page tables, with minimal involvement from hypervisor to ensure
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safety and isolation and 2. Xen itself exists in a 64MB section at top
of every address space, thus avoiding a TLB flush when entering and
leaving the hypervisor (with hypercalls).

Each time a guest OS requires a new page table, perhaps because a
new process is being created, it allocates and initializes a page from its
own memory reservation and registers it with Xen. At this point the
OS must relinquish direct write privileges to the page-table memory: all
subsequent updates must be validated by Xen. This restricts updates in
a number of ways, including only allowing an OS to map pages that it
owns, and disallowing writable mappings of page tables.

Segmentation is virtualized in a similar way, by validating updates to
hardware segment descriptor tables. The only restrictions on x86 segment
descriptors are: (i) they must have lower privilege than Xen, and (ii) they
may not allow any access to the Xenreserved portion of the address space.

The approach in Xen is to register guest OS page tables directly with the
MMU, and restrict guest OSes to read-only access. Page table updates
are passed to Xen via a hypercall; to ensure safety, requests are validated
before being applied.

To aid validation, we associate a type and reference count with each ma-
chine page frame. A frame may have any one of the following mutually-
exclusive types at any point in time: page directory (PD), page table
(PT), local descriptor table (LDT), global descriptor table (GDT), or
writable (RW). Note that a guest OS may always create readable map-
pings to its own page frames, regardless of their current types. A frame
may only safely be retasked when its reference count is zero. This mech-
anism is used to maintain the invariants required for safety; for example,
a domain cannot have a writable mapping to any part of a page table as
this would require the frame concerned to simultaneously be of types PT
and RW.

The type system is also used to track which frames have already been
validated for use in page tables. To this end, guest OSes indicate when a
frame is allocated for page-table use – this requires a one-off validation of
every entry in the frame by Xen, after which its type is pinned to PD or
PT as appropriate, until a subsequent unpin request from the guest OS.
This is particularly useful when changing the page table base pointer, as it
obviates the need to validate the new page table on every context switch.
Note that a frame cannot be retasked until it is both unpinned and its
reference count has reduced to zero – this prevents guest OSes from using
unpin requests to circumvent the reference-counting mechanism.

As far as physical memory is concerned, the initial memory allocation,
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or reservation, for each domain is specified at the time of its creation;
memory is thus statically partitioned between domains, providing strong
isolation. A maximumallowable reservation may also be specified: if
memory pressure within a domain increases, it may then attempt to
claim additional memory pages from Xen, up to this reservation limit.
Conversely, if a domain wishes to save resources, perhaps to avoid incur-
ring unnecessary costs, it can reduce its memory reservation by releasing
memory pages back to Xen.

2.4.3 Virtualizing Devices

To interact with the external I/O devices of a system usually specific
software - kernel modules are needed. The so called device drivers operate
in higher prividlege level than application and either on the same or lesser
level compared to kernel. In native OS the every device is serviced by
its own driver. In case of a Virtualized Environment where multiple OSs
coexist this cannot be the case. The hypervisor must multiplex guest
accesses to hardware. It cannot allow the guest OS to have direct access
to hardware.

When virtualizing an I/O device, it is necessary for the underlying virtu-
alization software to service several types of operations for that device.
Interactions between software and physical devices include the following:

• Device discovery: a mechanism for software to discover, query, and
configure devices in the platform.

• Device control: a mechanism for software to communicate with the
device and initiate I/O operations.

• Data transfers: a mechanism for the device to transfer data to and
from system memory. Most devices support DMA in order to trans-
fer data.

• I/O interrupts: a mechanism for hardware to be able to notify the
software of events and state changes.

In the following we refer to the various techniques used to virtualize
devices.
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Emulation - QEMU

I/O mechanisms on native (non-virtualized) platforms are usually per-
formed on some type of hardware device. The software stack, commonly
a driver in an OS, will interface with the hardware through some type
of memory-mapped (MMIO) mechanism, whereby the processor issues
instructions to read and write specific memory (or port) address ranges.
The values read and written correspond to direct functions in hardware.

Emulation refers to the implementation of real hardware completely in
software. Its greatest advantage is that it does not require any changes
to existing guest software. The software runs as it did in the native
case, interacting with the VMM emulator just as though it would with
real hardware. The software is unaware that it is really talking to a
virtualized device. In order for emulation to work, several mechanisms
are required.

The VMM must expose a device in a manner that it can be discovered by
the guest software. An example is to present a device in a PCI configu-
ration space so that the guest software can ”see” the device and discover
the memory addresses that it can use to interact with the device.

The VMM must also have some method for capturing reads and writes
to the device’s address range, as well as capturing accesses to the device-
discovery space. This enables the VMM to emulate the real hardware
with which the guest software believes it is interfacing.

The device (usually called a device model) is implemented by the VMM
completely in software (see Figure 2). It may be accessing a real piece of
hardware in the platform in some manner to service some I/O, but that
hardware is independent of the device model. For example, a guest might
see an Integrated Drive Electronics (IDE) hard disk model exposed by
the VMM, while the real platform actually contains a Serial ATA (SATA)
drive.

The VMM must also have a mechanism for injecting interrupts into the
guest at appropriate times on behalf of the emulated device. This is
usually accomplished by emulating a Programmable Interrupt Controller
(PIC). Once again, when the guest software exercises the PIC, these
accesses must be trapped and the PIC device modeled appropriately by
the VMM. While the PIC can be thought of as just another I/O device, it
has to be there for any other interrupt-driven I/O devices to be emulated
properly.

Emulation also facilitates the sharing of platform physical devices of the
same type, because there are instances of an emulation model exposed
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to potentially many guests. The VMM can use some type of sharing
mechanism to allow all guest’s emulation models access to the services of
a single physical device. For example, the traffic from many guests with
emulated network adapters could be bridged onto the platform’s physical
network adapter.

Since emulation presents to the guest software the exact interface of some
existing physical hardware device, it can support a number of different
guest OSs in an OS-independent manner. For example, if a particular
storage device is emulated completely, then it will work with any soft-
ware written for that device, independent of the guest OS, whether it be
Windows*, Linux*, or some other IA-based OS. Since most modern OSs
ship with drivers for many well-known devices, a particular device make
and model can be selected for emulation such that it will be supported
by these existing legacy environments.

Paravirtualization

Another technique for virtualizing I/O is to modify the software within
the guest, an approach that is commonly referred to as paravirtualiza-
tion. The advantage of I/O paravirtualization is better performance. A
disadvantage is that it requires modification of the guest software, in
particular device drivers, which limits its applicability to legacy OS and
device-driver binaries.

With paravirtualization the altered guest software interacts directly with
the VMM, usually at a higher abstraction level than the normal hard-
ware/software interface. The VMM exposes an I/O type-specific API,
for example, to send and receive network packetsin the case of a network
adaptor. The altered software in the guest then uses this VMM API
instead of interacting directly with a hardware device interface.

Paravirtualization reduces the number of interactions between the guest
OS and VMM, resulting in better performance (higher throughput, lower
latency, reduced CPU utilization), compared to device emulation.

Instead of using an emulated interrupt mechanism, paravirtualization
uses an eventing or callback mechanism. This again has the potential
to deliver better performance, because interactions with a PIC hardware
interface are eliminated, and because most OS’s handle interrupts in a
staged manner, adding overhead and latency. First, interrupts are fielded
by a small Interrupt Service Routine (ISR). An ISR usually acknowledges
the interrupt and schedules a corresponding worker task. The worker task
is then run in a different context to handle the bulk of the work associated
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with the interrupt. With an event or callback being initiated directly in
the guest software by the VMM, the work can be handled directly in the
same context. With some implementations, when the VMM wishes to
introduce an interrupt into the guest, it must force the running guest to
exit to the VMM, where any pending interrupts can be picked up when
the guest is reentered. To force a running guest to exit, a mechanism
like IPI can be used. But this again adds overhead compared to a direct
callback or event. Again, the largest detractor to this approach is that
the interrupt handling mechanisms of the guest OS kernel must also be
altered.

Since paravirtualization involves changing guest software, usually the
changed components are specific to the guest environment. For instance,
a paravirtualized storage driver for Windows XP* will not work in a
Linux environment. Therefore, a separate paravirtualized component
must be developed and supported for each targeted guest environment.
These changes require apriori knowledge of which guest environments
will be supported by a particular VMM.

Sharing of any platform physical devices of the same type is supported
in the same manner as emulation. For example, guests using a paravir-
tualized storage driver to read and write data could be backed by stores
on the same physical storage device managed by the VMM.

Paravirtualization is increasingly deployed to satisfy the performance
requirements of I/O-intensive applications. Paravirtualization of I/O
classes that are performance sensitive, such as networking, storage, and
high-performance graphics, appears to be the method of choice in modern
VMM architecture. As described, para-virtualization of I/O decreases
the number of transitions between the client VM and the VMM, as well
as eliminates most of the processing associated with device emulation.

Paravirtualization leads to a higher level of abstraction for I/O interfaces
within the guest OS. I/O-buffer allocation and management policies that
are aware of the fact that they are virtualized can be used for more
efficient use of the VT-d protection and translation facilities than would
be possible with an unmodified driver that relies on full device emulation.

Xen Xen first came up with the idea of split driver model (see later
section for more details). A frontend driver resides in the guest and is all
responsible to create the data to be transmitted, then propagates them
to the backend driver who eventually passes them to the native driver.

In Xen the backend driver as long as the native driver (both kernel mod-
ules) reside in the privileged domain (dom0).
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KVM Rusty Russel[3] introduced this kind of model in KVM under
the name Virtio. In this case the backend driver is included in the qemu
process (user space).

Direct Device Assignment

There are cases where it is desirable for a physical I/O device in the
platform to be directly owned by a particular guest VM. Like emulation,
direct assignment allows the owning guest VM to interface directly to
a standard device hardware interface. Therefore, direct device assign-
ment provides a native experience for the guest VM, because it can reuse
existing drivers or other software to talk directly to the device.

Direct assignment improves performance over emulation because it allows
the guest VM device driver to talk to the device in its native hardware
command format eliminating the overhead of translating from the de-
vice command format of the virtual emulated device. More importantly,
direct assignment increases VMM reliability and decreases VMM com-
plexity since complex device drivers can be moved from the VMM to the
guest.

Direct assignment, however, is not appropriate for all usages. First, a
VMM can only allocate as many devices as are physically present in
the platform. Second, direct assignment complicates VM migration in a
number of ways. In order to migrate a VM between platforms, a similar
device type, make, and model must be present and available on each
platform. The VMM must also develop methods to extract any physical
device state from the source platform, and to restore that state at the
destination platform.

Moreover, in the absence of hardware support for direct assignment, di-
rect assignment fails to reach its full potential in improving performance
and enhancing reliability. First, platform interrupts may still need to
be fielded by the VMM since it owns the rest of the physical platform.
These interrupts must be routed to the appropriate guestin this case the
one that owns the physical device. Therefore, there is still some overhead
in this relaying of interrupts. Second, existing platforms do not provide a
mechanism for a device to directly perform data transfers to and from the
system memory that belongs to the guest VM in an efficient and secure
manner. A guest VM is typically operating in a subset of the real physical
address space. What the guest VM believes is its physical memory really
is not; it is a subset of the system memory virtualized by the VMM for
the guest. This addressing mismatch causes a problem for DMA-capable
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devices. Such devices place data directly into system memory without
involving the CPU. When the guest device driver instructs the device to
perform a transfer it is using guest physical addresses, while the hardware
is accessing system memory using host physical addresses.

In order to deal with the address space mismatch, VMMs that support
direct assignment may employ a pass-through driver that intercepts all
communication between the guest VM device driver and the hardware
device. The pass-through driver performs the translation between the
guest physical and real physical address spaces of all command arguments
that refer to physical addresses. Pass-through drivers are device-specific
since they must decode the command format for a specific device to
perform the necessary translations. Such drivers perform a simpler task
than traditional device drivers; therefore, performance is improved over
emulation. However, VMM complexity remains high, thereby impacting
VMM reliability. Still, the performance benefits have proven sufficient
to employ this method in VMMs targeted to the server space, where
it is acceptable to support direct assignment for only a relatively small
number of common devices.

There are hardware devices that can be directly assigned to guests. One
of these is the SR-IOV network adapter which has a number of virtual
interfaces that can be explicitly exported to the guest. This reduces the
overhead by much, but still cannot achieve bare metal performace due to
host interception to all interrupts which can be bypassed with proposals
like ELI[4].

2.5 Xen Internals in Paravirtualized Mode

As mentioned before, once the hypervisor has booted it starts the dom0
kernel. All other can then be started on demand. To keep track the
different domain that coexist in the system Xen uses basicaly two main
structs: domain and vcpu 2. It maintains linked lists of these elements
to be able to traverse every domain and its own vCPUs.

The domain structure contains some info about available memory, event
channels, scheduling, privileges etc. The vcpu structure has info about
its state, pending events, time-keeping, scheduling, affinity etc.

Two most important structs exported to each domain at start of day
are: start info and shared info (the second included in the first).

2domain and vcpu structures defined in xen/include/xen/sched.h
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The former contains vital info about vitual address allocated to the do-
main, machine page number of– and event channel for– the console and
the Xen-store mechanism, etc. The latter ows info about pending and
masked events, details needed for timekeeping, etc. Pages containing
those structures are the first mapped into the domains address space
and make it possible to continue booting. Linux references them as
xen start info and HYPERVISOR shared info.

2.5.1 Time–keeping

In a virtualized environment a domain is not always running; can be
preempted by another and forced to leave the processor. As a result
it will miss timer interrupts and therefore is unable to perform valid
and precise time-keeping. Before we continue it is wise to introduce the
following definitions of time:

Wall time is the actual time of day, common for all VMs. It is useful
for the various timers existing in OS.

Virtual time is the total period of time each VM is actually running
on a processor. It is needed for OS internal process scheduling.

System time is the actual time that has passed since the VM booted.

Each VM uses its own shared info to save data needed for time–keeping.
In the listing below the most important points are mentioned. When a
VM boots it saves the current wall time. Its system time is periodically
calculated; at the time of the update the TSC value is temporarily put
aside to provide better precision when requested.

To get the current wall time from the guest OS perspective we have
to “consult” Xen; therefore xen read wallclock() is used. It gets the
wall clock in boot time and the time the last update of the system time
occured, extracts from the current TSC value the time since then and fi-
nally returns a timespec with secs and nsec passed since EPOCH. Details
of how auxiliary functions c alculate those numbers are omitted.

per cpu ( xen vcpu , cpu ) =
&HYPERVISOR shared info−>vcpu in f o [ cpu ]

xen vcpu = &get cpu var ( xen vcpu ) ;

/∗ the l a s t updated system time in nsec ∗/
xen vpcu−>time . system time
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/ the TSC when l a s t update o f system time occured ∗/
xen vcpu−>time . tsc t imestamp

/∗ the wal l time dur ing boot ∗/
&HYPERVISOR shared info−>wc sec | nsec

/∗ with the help o f v a r i a b l e s and s t r u c t u r e s above ∗/

/∗ r e tu rn s t imespec s i n c e EPOCH ∗/
x en r ead wa l l c l o ck ( )

/∗ adds wc and nsec s i n c e boot ∗/
pvc l o ck r ead wa l l c l o ck (wc , time )

/∗ r e tu rn s nsec s i n c e boot ∗/
pvc l o ck c l o ck s ou r c e r ead ( )

/∗ r e tu rn s the time o f l a s t system update
∗ in nsec ex t r a c t i n g the va lu e s from
∗ vcpu t ime in f o s t r u c t ( xen vcpu−>time ) ∗/

pvc l o ck ge t t ime va lu e s ( )

/∗ r e tu rn s nsec passed s i n c e l a s t update
∗ c a l c u l a t i n g the t s c d e l t a between cu r r en t

∗ value and one s tor ed in tsc t imestamp ∗/
p v c l o c k g e t n s e c o f f s e t ( )

The outcome is that we have a tool in hands that gives us in nsec gran-
ularity the current time which is common in every VM in the system.

2.5.2 Xenstore

The Xenstore is a mechanism to communicate vital information between
the domains. Its main responsibility is for the driver domain to be able
to export details about the backends of available devices. So the VMs
could initilize their frontends and perform any I/O.

The implementation is done with a shared page, whose frame number is
communicated within the start info and then mapped to the domain’s
own virtual address space.

Xenstore structure is much alike a filesystem (i.e. a directory tree with
different entries in the leaves). Every entry/value has a uniqueue key to
reference to. All entries are accessible from all domains.
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A common xenstore transaction is when setting up the networking on a
VM boot. The VM after init it communicates the frontend details (ring-
ref, eventchannel configuration options, etc.) in /local/domain/1/device/vif/
and notifies backend in the driver domain, who in its turn reads the
store and afterwards exports the backend details (handle, configuration
options, etc.) in /local/domain/0/backend/vif.

2.5.3 Event Channel Mechanism

In native oparating systems real hardware uses interrupts for asynchronous
notification. In a paravirtulized environment all interrupts are handled
by the hypervisor. In order to propagate them the event channel mech-
anism is introduced. It is also used for bidirectional interdomain notifi-
cation.

Event channels mechanism is implemented with two bitmasks, one for
events pending and one in events maksed and a flag if there are any events
pending or not, all stored in shared info structure of each domain. Once
an event is delivered to a domain (e.g via notify remote via irq() in
case of interdomain notification) the coresponding bit in the pending
bitmask is set, regardless if the domain currently sleeping. Every time a
vCPU is scheduled in or its OS is switching from kernel to user mode or
vice versa, checks for pending events.

If there are any then the corresponding handlers are invoked. The binding
between handler and event for interdomain notification is done during init
phase (e.g. of netfront dirver) via bind interdomain evtchn to irqhandler().

2.5.4 I/O Rings

An I/O ring is a shared memory region, i.e. a circular buffer with fixed
size entries that is used for data exchange between domains, usually
between frontend and backend.

According to figure 2.6:

1. We have this circular buffer that both VMs can address it.

2. Additionally we have four pointers; request/response–producer/consumer.

3. We suppose that these pointers move clockwise on the ring.

4. All pointers are initilized a place 0.
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Figure 2.6: I/O rings: Xen’s implementation for interdomain data ex-
change

5. Suppose 10 requests are produced. They are pushed in the ring
and the request-producer pointer is increased by 10.

6. The other end removes gradually requests from the tail; request-
consumer is increased. It replaces them with responces; responces-
producer is increased.

7. The responces are removed from the tail and responces-consumer
increased.

8. The ring is full if the request-producer and the responce-consumer
overlap.

9. There are no more requests if the request-consumer and the request-
producer overlap.

10. There are no more responces if the responce-consumer and the
responce-producer overlap.

Detailed data types and useful macros for I/O ring manipulation defined
in include/xen/interface/event channel.h. One of which is RING PUSH REQUESTS AND CHECK NOTIFY

macro used by the split driver model; it pushes requests in the ring and
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Figure 2.7: Xen’s network split driver model

checks if the other end is currently processing any. If so it will con-
tinue until it consumes the newly inserted ones. If not then it must be
notified; that is done via the notify remote via irq() and the event
channel mechanism as mentioned before.

2.5.5 The Split Driver Model

As long as in a paravirtualized environment a VM cannot access the
hardware directly because its privileges are insufficient to execute I/O
commands. Therefore the split driver model is introduced. Based on the
fact that only the driver domain can access the hardware via its native
drivers (who eventually invoke certain hypercalls) we have the following
concept: the driver domain runs an extra driver, the backend who sits
between the actual driver and the one running in the VM, the frontend.
The latter exports a simple network API to the VM’s kernel and talks
to backend who eventually executes the I/O requested.

To implement it we make use of the I/O rings and the event channel
mechanism mentioned earlier. Both ends are initialized using the Xen-
store for communicating configuration options.

An actual split driver is referred in detail below: the netfront–netback
drivers (see also Figure 2.7).
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2.6 Network I/O Path

2.6.1 In Native OS

In this section we break down every component that participates in the
network I/O path in a native OS. The basic networking stack 3 in Linux
uses the four-layer model known as the Internet model. At the bottom of
the stack is the link layer. The link layer (Ethernet, SLIP, PPP) refers to
the device drivers providing access to the physical layer, which could be
numerous mediums, such as serial links or Ethernet devices. Above the
link layer is the network layer (IP, ICMP, ARP), which is responsible for
directing packets to their destinations. The next layer, called the trans-
port layer (TCP, UDP), is responsible for peer-to-peer communication
(for example, within a host). While the network layer manages com-
munication between hosts, the transport layer manages communication
between endpoints within those hosts. Finally, there’s the application
layer (HTTP, FTP, SMTP), which is commonly the semantic layer that
understands the data being moved.

Core network architecture

Figure 2.8 provides a high-level view of the Linux network stack. At
the top is the user space layer, or application layer, which defines the
users of the network stack. At the bottom are the physical devices that
provide connectivity to the networks (serial or high-speed networks such
as Ethernet). In the middle, or kernel space, is the networking subsystem
that we focus in this section. Through the interior of the networking stack
flow socket buffers (sk buff) that move packet data between sources and
sinks.

Overviewing shortly the core elements of the Linux networking subsys-
tem (see Figure 2.8), a) at the top we find the system call interface.
This simply provides a way for user-space applications to gain access to
the kernel’s networking subsystem. b) Next is a protocol-agnostic layer
that provides a common way to work with the underlying transport-level
protocols. c) Next are the actual protocols, which in Linux include the
built-in protocols of TCP, UDP, and, of course, IP d) Next is another ag-
nostic layer that permits a common interface to and from the individual
device drivers that are available, e) followed at the end by the individual
device drivers themselves.

3http://www.ibm.com/developerworks/linux/library/l-linux-networking-stack/
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Figure 2.8: Linux high-level network stack architecture

System call interface

The system call interface can be described from two perspectives. When a
networking call is made by the user, it is multiplexed through the system
call interface into the kernel. This ends up invoking sys socket()4,
which then further demultiplexes the call to its intended target. The
other perspective of the system call interface is the use of normal file
operations for networking I/O.

Protocol agnostic interface

The sockets layer is a protocol agnostic interface that provides a set of
common functions to support a variety of different protocols.

Communication through the network stack takes place with a socket.
The socket structure in Linux is sock5.

The networking subsystem knows about the available protocols through
a special structure that defines its capabilities. Each protocol maintains

4sys socket() defined innet/socket.c
5sock structure is defined in include/net/sock.h
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Figure 2.9: Internet protocol array structure

a structure called proto6.

Network protocols

The network protocols section defines the particular networking protocols
that are available (such as TCP, UDP, and so on). These are initialized
at start of day in inet init()7 (as TCP and UDP are part of the inet
family of protocols).

The proto structure defines the transport-specific methods, while the
proto ops structure defines the general socket methods.

Data movement for sockets takes place using a core structure called the
socket buffer (sk buff). An sk buff contains packet data and also state

6proto structure is defined in include/net/sock.h
7inet init() is defined in net/ipv4/af inet.c
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Figure 2.10: Socket buffer data structure

data that cover multiple layers of the protocol stack. Each packet sent
or received is represented with an sk buff8(see Figure 2.10).

As shown, multiple sk buff may be chained together for a given con-
nection. Each sk buff identifies the device structure (net device) to
which the packet is being sent or from which the packet was received.
As each packet is represented with an sk buff, the packet headers are
conveniently located through a set of pointers (th, iph, mac, header).
Because the sk buff are central to the socket data management, a num-
ber of support functions have been created to manage them. Functions
exist for sk buff creation and destruction, cloning, and queue manage-
ment.

Socket buffers are designed to be linked together for a given socket and
include a multitude of information, including the links to the protocol
headers, a timestamp (when the packet was sent or received), and the
device associated with the packet.

Device agnostic interface

Below the protocols layer is another agnostic interface layer that connects
protocols to a variety of hardware device drivers with varying capabilities.
This layer provides a common set of functions to be used by lower-level
network device drivers to allow them to operate with the higher-level
protocol stack.

First, device drivers may register or unregister themselves to the ker-
nel through register netdevice() or unregister netdevice(). The

8sk buff structure is defined in include/linux/skbuff.h
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caller first fills out the net device structure and then passes it in for reg-
istration. The kernel calls its init function (if one is defined), performs a
number of sanity checks, creates a sysfs entry, and then adds the new
device to the device list (a linked list of devices active in the kernel)9.

To send an sk buff from the protocol layer to a device, dev queue xmit()

is used. This function enqueues an sk buff for eventual transmission by
the underlying device driver10. The device structure contains a method,
hard start xmit(), that holds the driver function for initiating trans-
mission of an sk buff.

Receiving a packet is performed conventionally with netif rx(). When
a lower-level device driver receives a packet (contained within an allo-
cated sk buff), the sk buff is passed up to the network layer through
netif rx(). It queues then the sk buff to an upper-layer protocol’s
queue for further processing through netif rx schedule() 11.

Recently, a new application program interface (NAPI) was introduced
into the kernel to allow drivers to interface with the device agnostic
layer (dev). NAPI can yield better performance under high loads by
introducing a polling mechanism, and thus avoid taking an interrupt for
each incoming frame.

Device drivers

At the bottom of the network stack are the device drivers that manage
the physical network devices12. At initialization time, a device driver
allocates a net device structure and then initializes it with its necessary
routines. One of these routines, dev->hard start xmit(), defines how
the upper layer should enqueue an sk buff for transmission. This routine
takes an sk buff. The operation of this function is dependent upon the
underlying hardware, but commonly the packet described by the sk buff

is moved to a hardware ring or queue. Frame receipt, as described in the
device agnostic layer, uses netif rx() or netif receive skb() for a
NAPI-compliant network driver. A NAPI driver puts constraints on the
capabilities of the underlying hardware. After a device driver configures

9net device structure is defined in include/linux/netdevice.h. The various func-
tions are implemented in net/core/dev.c.

10The network device being defined by the net device structure or sk buff->dev

reference in the sk buff structure
11dev queue xmit() and netif rx() are defined in net/core/dev.c
12Examples of devices at this layer include the SLIP driver over a serial interface

or an Ethernet driver over an Ethernet device
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Figure 2.11: Netfront-Netback interaction

its interfaces in the dev structure, a call to register netdevice() makes
it available for use13.

2.6.2 In a ParaVirtualized Environment

In this section we break down every component that participates in the
network I/O path in a Xen paravirtualized setup. Having already men-
tioned in detail in the previous section the native I/O path we take under
the microscope how the split driver model sits between the the user ap-
plication and TCP/IP stack discussed in native I/O path.

At init phase both drivers bind an irqhandler to the event channel previ-
ously allocated; xennet interrupt() for the netfront and netif be int()

for the netback. Some structs have also been initialized. net device, a
basic kernel data structure necessary for networking (encapsulated in the
generic device structure), references netfront info and backend info. The
latter includes a xen netif.

In the rest of this section we will describe the netfront-netback interaction
which is also depicted in Figure 2.11. Taking the tx packet flow and

13Drivers specific to network devices found in drivers/net
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assuming that we have an sk buff ready to transmit (after having followed
the same procedure as in native OS????) the next things will occur:

1. xennet start xmit() is invoked. It takes care of fragmentation
and eventually pushes requests in the tx ring and notifies netback
if necessary.

2. xennet tx buf gc() is invoked for pending responses in the tx ring.

3. when the driver domain checks for pernding events the irqhan-
dler netif be int() is fired. It adds netif in net schedule list and
invokes the bottom half handler which eventually schedules the
net tx action() tasklet.

4. net tx action() perform two things: it invokes net tx submit()

and the skb follows the flow discussed in 2.6.1; invokes net tx action dealloc()

to perform some memory cleanup (grand pages etc.) and in its turn
call make tx response().

5. the corresponding responses are pushed in the tx ring and netback
notifies the netfront if necessary.

After that we reach a phase identical to the one that appears in the rx
data flow. To this end, before we mention the netfront responce to it,
we describe shortly rx procedure, and specifically after having acquired
the sk buff from the lower levels of native I/O path (hardware, native
driver, demux/filter/iptables) and before the netfront gets notified:

1. netif be start xmit() is invoked.

2. The sk buff is enqueued in the rx queue of netback.

3. netback’s bottom half handler is invoked.

4. The tasklet net rx action() is scheduled.

5. It performs some memory arrangements and pushes the responses
(i.e. the incomming data) in the rx ring via make rx response()

and notifies the netfront if necessary

So on both cases we reach the phase of netfront getting notified via an
event. Specifically:
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1. when it checks for pending events, the irqhanlder xennet interrupt()

is fired.

2. it checks for responces in the tx ring with xennet tx buf gc() 14

and cleans them up.

3. then is schedules xennet poll() napi call which checks for incom-
ming resposes in the rx ring.

2.7 Scheduling

In a preemptive multitasking system someone needs to decide which task
is going to run and for how long. This resposibility lays on a specific
system code: the scheduler. Based on an algorithm it picks a task from
the pool of runnable ones, let it run on the processor for some time
and then preempts it, chooses another and so forth. In this way the
available task are being multiplexed in a way that gives the impression
of running in parallel. In the case of a native operating system the
scheduler multiplexes the various existing processes while in a virtualized
environment it manages Virtual Machines. Of course for the latter a
native system scheduler should run on top in order the processes residing
in the VM to gain an actual timeslice.

Timeslice represents how long a task can run on the processor until it is
preepmted. Too long a timeslice causes the system to have poor inter-
active performance - loss of “concurrency”. Too short a timeslice causes
significant amounts of preocessor time to be wasted on the overhead of
context-switch. I/O-bound process do not need longer timeslices (al-
though they do like to run often), whereas processor-bound processes
ccrave long timelices (to keep their caches hot).

Priority is a value assigned to each task. All tasks with equal priorities
should be treated the same. A task with higher priority is favored among
others and is prefered to run.

The nice value is a control over the timelice allocated to each task. A task
with large nice value is considered to be nice to others; it gets smaller
timeslice or gets lower priority.

The behavior of the scheduler that determines what runs when is called
policy. In the case of a unified scheduler, the policy in a system must

14Eventually netif wake queue() is called, which allows upper layers to call the
device hard start xmit() routine, used for flow control when transmit resources are
available.
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attempt to satisfy two conflicting goals: fast process response time (low
latency) and maximal system utilization (high throughput).

In the following sections we will refer with detail to the current scheduler
of linux kernel, the Completely Fair Scheduler, as well as to the stable
scheduler the Xen hypervisor uses, the Credit Scheduler.

Priority & Timeslice - Pathological Problems

Schedulers have two common concepts: process priority and timeslice.
Timeslice is how long a process runs; processes start with some default
timeslice. Processes with a higher priority run more frequently and (on
many systems) receive a higher timeslice. In Linux the priority is ex-
ported to user-space in the form of nice values. Here we mention some
design concerns about those values:

• Mapping nice values onto timeslices requires a decision about what
absolute timeslice to allot to each nice value. 0-20 nice maps to
100-5 ms.

• Relative nice values and their mapping to timeslices. Nicing down a
process by one has wildly different effects depending on the starting
nice value.

• Timeslice must be some interger multiple of the timer tick. It
defines the floor of the timeslice as well as limits the difference
between two timeslices.

• Boosting freshly woken-up processes can provide unfair amount of
processor time, at the expense of the rest of the system.

Some easy to apply solutions to the problems above are making nice
values geometric instead of additive and mapping nice values to timeslices
using a measurement decoupled from the timer tick. But still assigning
absolute timeslices yields a constant switching rate but variable fairness.
CFS assigns each process a proportion of the processor. Thus yields
constant fairness but a variable switching rate.

2.7.1 Linux’s CFS

Currently Linux uses the Complete Fair Scheduler (CFS). Linux aiming
to provide good interactive response and desktop performance, optimizes
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for process responce, thus favoring I/O-bound processes over processor-
bound ones without neglecting the latter.

CFS is based on a simple concept: Model process scheduling as if the
system had an ideal, prefectly multitasking processor. In such a system
each preocess would receive 1/n of the processor’s time, where n is the
number of runnable processes, and we’d schedule them for infinitiley
small durations, so that in any measurable period we’d have run all n
processes for the same amount of time.

Such a perfect multitasking is impossible. CFS will run each process for
some amount of time, round-robin, selecting next the process that has run
least. Rather than assign each process a timeslice, CFS calculates how
long a process should run as a function of the total number of runnable
processes. Instead of using the nice value to calculate a timeslice, CFS
uses it to weight the proportion of the process is to receive.

CFS defines a targeted latency. Based on that each process is assigned
a timeslice proportional to its weight divided by the total weight of all
runnable processes so that none can experience a larger response time.
To the other end CFS defines a lower boundary for a timeslice called
minimum granularity.

Each task stores its virtual runtime. That is the total amount of time it
has used the processor normalized by the number of runnable processes.
Its units are ns; that is decoupled from the timer tick.

CFS picks the next process to run with the smallest virtual runtime. It
uses red-black tree (self balancing binary tree) to sort processes depend-
ing on their virtual runtime. In such a structure the left most leaf (which
is also cached) is the process with the least virtual runtime.

Linux supports three scheduling policies: normal, round-robin and fifo.
The first one is where the most processes belong to and is hanlded by
the CFS described earlier. The two other are real-time policies; fifo
means that if a process belonging to this policy becomes runnable it gets
picked up at once and continues running until it yields the processor.
round-robin means that each runnable process in this group gets a fixed
timeslice and are circularly multiplexed until they block. Of course any
normal processes are getting stalled until non runnable real-time exists.

2.7.2 Xen’s Credit Scheduler

Xen implements a modular scheduling concept; it executes a generic
scheduler code which invokes scheduler specific functions that belong to
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the exported interface of currently running scheduler. In the remaining
of this section we try to break down its important parts.

From now on when we refer to Credit we imply any scheduler and its
specific implementations. To start with we have to mention that there
are two main per cpu structs; scheduler and schedule data. The first
contains the Credit interface and has a field sched data pointing to
Credit private data with active domains, number of cpus, etc. The second
and very important has the currently running vpcu, the main scheduling
timer, and a sched priv field pointing to the Credit physical cpu data.
It contains the runqueue for the corresponding cpu as well as the Credit
ticker.

It is wise to stay a bit on these two timers. When s timer goes off it
raises a SCHEDULE SOFTIRQ which makes the generic do schedule() to
be invoked; in its turn calls Credit csched schedule() which acts based
on its algorythm; finally it returns a task slice containing the vcpu to
run next and the amount of time the scheduler should allocate for it. As
so the s timer is set to go off when this amount of time expires. Currently
this time is 30ms. On the other hand the ticker is a scheduler specific
timer that is ticking every 10ms basically for accounting purposes.

Having covered the ticking part of the scheduling we can continue men-
tioning the Credit algorithm in short:

a) As discussed earlier every physical core has a local run-queue of vC-
PUs eligible to run.

b) The scheduler picks the head of the run-queue to execute for a time-
slice of 30ms at maximum.

c) Every time accounting occurs (every 10ms) credits are debited to the
running domain.

d) New allocation of credits occurs when all domains have their own
consumed.

e) When a vCPU is woken up it gets inserted to a cpu’s run-queue after
all vCPUs with greater or equal priority.

f) vCPUs can be in one of 4 different priorities (ascending): IDLE,
OVER, UNDER, BOOST. A vCPU is in the OVER state when it
has all its credits consumed. BOOST is the state when one vCPU
gets woken up.
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g) When the local run-queue is empty or full with OVER / IDLE vCPUs,
Credit migrates UNDER / BOOST vCPUs from neighbouring run-
queues to empty one (load-balancing).

Credit’s Shortcomings Credit is a general purpose scheduler that
tries to perform adequately for the common case. It has mechanisms to
boost temporarily I/O domains and a policy that lets a CPU bound do-
main occupy a physical core for an enough perriod of time before preempt
it. But still it has a few shortcomings that become more apparent when
different types of workloads and especially intensive ones co-exist. This
is the main reason why we in this work we propose coexisting scheduling
policies in a VM container that are tailored to the workloads’ needs and
service each domain ideally.

Some of the cases that the Credit falls short are the following:

a) In case a VM yields the processor before accounting occurs, no credits
are debited [5]. This gives the running VM an advantage over oth-
ers that consume credits and fall eventually to OVER state just by
running for a bit longer.

b) BOOST vCPUs are favored unless they have their credits consumed.
In case of a fast I/O, a vCPU consumes negligible credits (see (a))
and as a result CPU-bound vCPUs get eventually neglected.

c) Once a CPU bound VM gets scheduled in it does not get preempted
until it consumes all of its time-slice. As a result I/O service, even if
data is available to receive or transmitt, gets stalled.

This kind of shortcomings that are expected in a general purpose sched-
uler we are trying to attack with our proposed concept of co-existing
scheduling policies that we are presenting in the following chapters.

2.7.3 CPU pools

The concept of CPU pools is simple: every pool consists of a set of
physical cores and a scheduler running on top of them. During boot
the primary pool is created running the default scheduler, acquiring all
available physical cores and hosting the driver domain. Other pools can
created and destroyed on demand as long as some rational requirements
are satified:
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a) To remove one core from an existing pool, it must be ensured that
there are remaining ones that can service the domains running on this
pool. If vCPU are pinned to this core then the operation will fail.

b) To add a new core to an existing pool, it must be first in the free list.

c) pool0 cannot be destroyed and dom0 cannot be moved.

Pools manipulation are done via hypercall HYPERVISOR sysctl() with
the XEN SYSCTL cpupool op command. According the desired operation
following subcommands are implemented:

XEN SYSCTL CPUPOOL OP CREATE
XEN SYSCTL CPUPOOL OP DESTROY
XEN SYSCTL CPUPOOL OP INFO
XEN SYSCTL CPUPOOL OP ADDCPU
XEN SYSCTL CPUPOOLOP RMCPU
XEN SYSCTLCPUPOOLOPMOVEDOMAIN
XEN SYSCTL CPUPOOL OP FREEINFO

CPU pools and scheduling are obviously interrelated; when a cpu pool
operation is to be performed methods of the involved schedulers should
be invoked. Being obvious that on creating/destroying a cpu pool the
init/deinit methods of the corresponding schedulers should be invoked,
below we demonstrate two basic features of cpu pools that a more com-
plicated and worth mentioning; the operation of adding a core to an
existing pool and the opoeration of moving a domain from a cpupool to
another.

1. XEN SYSCTL CPUPOOL OP ADDCPU:

(a) Firstly it checks if the given CPU is available (in free list)

(b) Eventually schedule cpu switch() is invoked which deals
with the scheduler specific calls of old and new scheduler inter-
face: specifically, alloc pdata() for the new core, alloc vdata()

for the idle vcpu, tick suspend() for the old scheduler, change
the per cpu variables cpupool, scheduler and schedule data,
tick resume() for the new scheduler and insert vcpu() for
the idle vcpu; finally free vdata() and free vdata() for the
old scheduler.

(c) The cpu is added in the valid mask of the pool.

2. XEN SYSCTL CPUPOOL OP MOVEDOMAIN:
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(a) dom0 cannot be move to another pool besides pool0.

(b) if the targeted pool does not own any physical core then abort.

(c) decrease the number of domains the old pool services.

(d) sched move domain() is invoked. New scheduler’s alloc domdata()

for the moving domain, alloc vdata() for each vcpu of the
moving domain, domain pause(), find the first valid cpu of
the new pool, migrate the vcpu timers to this cpu and de-
stroy vcpu for the previous scheduler, update domain affinity,
free domdata and finally domain unpause()

(e) increase the number of domains the new pool services

For further details and the actual implementation refer to the xen/com-
mon/cpupool.c, xen/include/xen/sched-if.h and xen/include/public/sysctl.h
where the basic structures and functions are defined.
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Related Work

3.1 HPC Setups

Recent advances in virtualization technology have minimized overheads
associated with CPU sharing when every vCPU is assigned to a physical
core. As a result, CPU–bound applications achieve near-native perfor-
mance when deployed in VM environments. However, I/O is a completely
different story: intermediate virtualization layers impose significant over-
heads when multiple VMs share network or storage devices [6, 7].

3.1.1 Software Approaches

[8, 9, 10, 11]

3.1.2 Hardware Approaches

[12, 13, 14, 15]

3.2 Service–oriented Setups

Cherkasova [16] is evaluating and comparing the Credit Scheduler and
the two other previously used; BVT and SEDF.

Ongaro et al. [5] examine the Xen’s Credit Scheduler and expose its
vulnerabilities from an I/O performance perspective. The authors eval-
uate two basic existing features of Credit and propose run-queue sorting
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according to the credits each VM has consumed. Contrary to our ap-
proach, based on multiple, co-existing scheduling policies, the authors
in [5] optimize an existing, unified scheduler to favor I/O VMs.

Finally, Hu et al. [17] propose a dynamic partitioning scheme using VM
monitoring. Based on run–time I/O analysis, a VM is temporarily mi-
grated to an isolated core set, optimized for I/O. The authors evaluate
their framework using one I/O–intensive VM running concurrently with
several CPU–intensive ones. Their findings suggest that more insight
should be obtained on the implications of co-existing CPU– and I/O–
intensive workloads. Based on this approach, we build an SMP-aware,
static CPU partitioning framework taking advantage of contemporary
hardware.

As opposed to [17], we choose to bypass the run-time profiling mech-
anism, which introduces overhead and its accuracy cannot be guaran-
teed. Specifically, we use a monitoring tool to examine the bottlenecks
that arise when multiple I/O–intensive VMs co-exist with multiple CPU–
intensive ones. We then deploy VMs to CPU-sets (pools) with their own
scheduler algorithm, based on their workload characteristics. In order to
put pressure on the I/O infrastructure, we perform our experiments in a
modern multi-core platform, using multi-GigaBit network adapters. Ad-
ditionally, we increase the degree of overcommitment to apply for a real-
world scenario. Overall, we evaluate the benefits of coexisting scheduling
policies in a busy VM container with VMs running various types of work-
loads. Our goal is to fully saturate existing hardware resources and get
the most out of the system’s performance.
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Design and Implementation

In order to examine the overall I/O behavior and to optimize the schedul-
ing effect on the resources utilization few things needed to be developed
from scratch and some other to be modified. In following sections we
present in detail our designs and implementations that allowed us to
evaluate (see Chapter 5) the concept of co-existing scheduling policies
and point out that such a idea can benefit I/O–intensive VMs without
having much of negative effect on the performance of others that run
CPU-intensive workloads.

4.1 Monitoring Tool

The paravirtualized I/O path is discussed in section 2.6.2. We build
on top of event channel mechanism and build a monitoring tool aim-
ing to measure the time lost between domU notification and dom0 han-
dling and vice versa. To implement it we choose to place time–stamps
just before the event notification occurs and just after the event han-
dler has fired. To this end, we add a function add cookie(); it gets
the current wall-clock time (see Section 2.5.1), the name of the inter-
face, the function running and appends it to the existing array of cook-
ies. As a result finally we should have two arrays, one extracted from
the netfront and one from the netback that should have 1-to-1 relation-
ship; when the one “sends” the other “receives”. But that was not the
case. On heavy I/O our monitor seemed to miss events. The actual
fact was that we were counting also the times when a vCPU received
an event on a channel that was already pending. To change that we
had to slightly modify the notify remote via irq() to make it known
via its return value. Digging the hypercalls invoked, we noticed that
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HYPERVISOR event channel op for the EVTCHNOP send case should prop-
agate the return value of evtchn set pending(). So at the end the
“send” event will be monitored with the following code:

RING PUSH REQUESTS AND CHECK NOTIFY(&np−>rx , n o t i f y ) ;
i f ( n o t i f y ) {
xen r ead wa l l c l o ck (& t s ) ;
r = n o t i f y r emo t e v i a i r q (np−>netdev−>i r q ) ;
i f ( r == 0 ) {
i f (np−>mon i tor dev i ce && i s t r i g g e r s e t ( ) )
add cook ie ( dev−>name , ts , FNNAME) ;

}
}

The whole cookies table is displayed via the proc fs. For this tool to ap-
ply in a more dynamic way we added two options;a trigger module and
some module parameters to the netfront driver. In the boot command
line of the domU we provide parameters for whether the domain will sup-
port this tool (monitor domain) and if so a list of its network interfaces
(eth[]) that will be monitor-able. At the init stage of the driver, for
every newly created netfront info instance, is defined whether it can
be monitored or not according to the booting parameters. The matching
between actual interfaces and the parameter list is done via the device’s
handle extracted from the Xenstore.

xenbus scan f (XBT NIL , dev−>nodename , ”handle ” , ”% l i ” , &handle ) ;

n e t f r o n t i n f o−>mon i tor dev i ce = monitor domain & eth [ handle ] ;

The netfront then in talk to netback() propagates the monitoring fea-
ture for the specific device via Xenstore. After the init phase, the
frontend changed() callback is fired and netback in its turn in connect rings()

gets aware which xen netif instance to monitor.

xenbus scan f (XBT NIL , dev−>otherend , ”monitor−dev i ce ” ,
”%d” , &ne t i f−>mon i tor dev i ce ) ;

To that we add the trigger module; echoing 1 to a file in /proc ini-
tialized the cookies array depending the size stated by a parameter in
cookies module previously described. After that monitoring is on (see
is trigger set() in first code block).

So we end up having a really flexible and capable tool. But what does it
actually measures? What conclusion can be extracted from the cookies
manipulation? Supposing an I/O intensive domU whose network inter-
face is under monitoring for enough time, a useful aggregate value can
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be calculated; Avg msec lost per MB transmitted. And that is because
it is the only common among different setups. The split-driver model
does not act identical for all the cases. It can batch requests before no-
tifying the other-end. For instance, on a busy VM container (in terms
of over-commitment) we have less events for the same amount of data
transmitted. It is measured that in case of only one I/O VM 1000000
cookies are filled in 5 secs while when other coexist it might take more
than a minute.

To sum up we have a tool that monitors the latency between event de-
livery and handling. To this end we can calculate the average time lost
per MB transmitted. This number is nothing but the time needed for
a vCPU that gets woken up from an event and becomes runnable to
the actual time that it gets running. And that applies both to events
from/to dom0 and domU. With other words we can express the effect of
scheduling to I/O path and performance.

4.2 The no-op Scheduler

The main reason for developing a scheduler that actually doesn’t perform
any scheduling algorythm for time–sharing, is the need for maximum
computing power for the driver domain who manages I/O in a paravir-
tualization environment. The way to achieve near native performance is
to dedicate to dom0 exclusive cores and never preempt it in favor other.
Such a scheduler should apply to any domain if that is desirable (and
of course resources available). Within this concept, in the rest of this
section we present in detail our implementation of this SMP-aware no-op
Scheduler.

As discussed in 2.7.2 Xen’s scheduler design is modular; one can easily
add a new scheduler. The additions to be made are the following:

Add our new scheduler in xen/common/schedule.c:

extern const s t r u c t s chedu l e r sched d imara def ;
extern const s t r u c t s chedu l e r s c h ed i o d e f ;
s t a t i c const s t r u c t s chedu l e r ∗ s ch edu l e r s [ ] = {

&sch ed s ed f d e f ,
&s ch ed c r e d i t d e f ,
&s ch ed c r ed i t 2 d e f ,
&sched d imara def ,
&s ch ed i o d e f ,
NULL

}
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and define the new scheduler ID in xen/include/public/domctl.h:

#de f i n e XEN SCHEDULERDIMARA 7
#de f i n e XEN SCHEDULER IO 8

Obviously it is not enough. The new scheduler has to implement some
methods. Our primitive no-op scheduler consists of the following ones:

const s t r u c t s chedu l e r sched d imara def = {
. name = ”dimara Schedu ler ” ,
. opt name = ”dimara ” ,
. s ched id = XEN SCHEDULER DIMARA,
. sched data = & dimara pr iv ,
. in i t domain = dimara dom init ,
. destroy domain = dimara dom destroy ,
. i n s e r t v cpu = dimara vcpu inser t ,
. des troy vcpu = dimara vcpu destroy ,
. s l e ep = dimara vcpu s leep ,
. wake = dimara vcpu wake ,
. ad ju s t = dimara dom cntl ,
. p ick cpu = dimara cpu pick ,
. do schedu le = dimara schedule ,
. i n i t = d imara in i t ,
. d e i n i t = d imara de in i t ,
. a l l o c vda ta = d imara a l l oc vdata ,
. f r e e vda ta = dimara f r ee vdata ,
. a l l o c pda ta = dimara a l loc pdata ,
. f r e e pda ta = dimara f r ee pdata ,
. a l loc domdata = dimara al loc domdata ,
. f ree domdata = dimara free domdata ,

} ;

In order to make the implementation of previous methods possible the
following fundamental structs have to be introduced:

s t r u c t dimara pcpu {
s t r u c t dimara vcpu ∗ run ; /∗ the vCPU attached to i t ∗/

} ;

s t r u c t dimara vcpu {
s t r u c t dimara dom ∗sdom ;
s t r u c t vcpu ∗vcpu ; /∗ the vCPU be l l on g in g to ∗/
in t oncpu ; /∗ i s i t attached to a pCPU? ∗/
in t s l e ep ; /∗ i s i t cu r r en t l y s l e e p i n g ? ∗/

} ;

s t r u c t d imara pr ivate {
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s p i n l o c k t l ock ;
u i n t 32 t ncpus ; /∗ #CPUs the s chedu l e r owns ∗/
cpumask t cpus ; /∗ which CPUs the s chedu l e r owns ∗/
cpumask t not occup ied ; /∗ which CPUs are not occupied ∗/

} ;

We present below how all these structures are related to the basic stuc-
tures discussed in Section2.7.2.

/∗ gen e r i c s t r u c t u r e s r ep r e s end ing vCPUs and Domains ∗/
s t r u c t vcpu ∗vc ;
s t r u c t domain ∗dom;

/∗ the s t r u c tu r e con ta in ing s chedu l e r s p e c i f i c methods ∗/
s t r u c t s chedu l e r ∗ops ;

/∗ s chedu l e r s p e c i f i c s t r u c t u r e s r e s p r e s en t i n g
∗ vCPUS, Domains , phy s i c a l c o r e s and schedu ler ’ s data ∗/

s t r u c t dimara vcpu ∗ svc ;
s t r u c t dimara dom ∗sdom ;
s t r u c t dimara pcpu ∗ spc ;
s t r u c t d imara pr ivate ∗prv = DIMARA PRIV( ops ) ;

/∗ the cpu index o f cu r r en t execut ion context ∗/
cpu = smp proce s so r id ( ) ;

/∗ the cpu index o f which the vCPU was p r ev iou ly running on ∗/
p r oc e s s o r = vc−>p r oc e s s o r

/∗ the vcpu cu r r en t l y running on th i s cpu ∗/
s t r u c t vcpu ∗ cur r =

per cpu ( schedu le data , vc−>p r oc e s s o r ) . cur r ;

/∗ macros f o r r e f e r e n c i n g s chedu l e r s p e c i f i c s t r u c t u r e s ∗/
#de f i n e DIMARA PRIV( ops ) \

( ( s t r u c t d imara pr ivate ∗ ) ( ( ops)−>sched data ) )

#de f i n e DIMARA PCPU( c ) \
( ( s t r u c t dimara pcpu ∗) per cpu ( schedu le data , c ) . s ched pr iv )

#de f i n e DIMARAVCPU( vcpu ) \
( ( s t r u c t dimara vcpu ∗) ( vcpu)−>s ched pr iv )

In the rest of this section we describe in short how individual methods
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are implemented and present their important parts via code snippets.

At start of day schedulers init() method is invoked. It allocates and ini-
tilizes scheduler specific structures and most important defines all CPUs
available:

memset ( prv , 0 , s i z e o f (∗ prv ) ) ;
c p u s s e t a l l ( prv−>not occup ied ) ;
ops−>sched data = prv ;
s p i n l o c k i n i t (&prv−>l o ck ) ;

Its basic concept is the following: It keeps track of the available physical
CPUs in the system, occupied or not. This info is kept in a bitmask in the
scheduler’s private data. For every newly created vCPU, alloc vdata()

is invoked and the scheduler attaches it to the first in the non-occupied
pCPU list and lets it run without scheduling it out. If all pCPU are
occupied, then the vCPU gets inserted in a “waiting list”. If a pCPU
becomes free after destroy vpcu(), the first in the list gets serviced 1

alloc vdata() method does the following:

svc−>oncpu = −1;
s p i n l o c k i r q s a v e (&prv−>lock , f l a g s ) ;
i f ( i s i d l e v c p u ( vc ) ) goto out ;
cpus and ( ava i l , prv−>cpus , prv−>not occup ied ) ;
i f ( cpus empty ( av a i l ) ) {

pr in tk (” no cpu av a i l a b l e ! ! ! \ n ” ) ;
goto out ;

}
cpu = vc−>p r oc e s s o r ;
i f ( c p u i s s e t ( cpu , a v a i l ) ) {

pr in tk (” putt ing i t to cpu %d \n” , cpu ) ;
spc = DIMARA PCPU( cpu ) ;
spc−>run = svc ;
cpu c l e a r ( cpu , prv−>not occup ied ) ;
svc−>oncpu = cpu ;

}
out :
s p i n u n l o c k i r q r e s t o r e (&prv−>lock , f l a g s ) ;
svc−>sdom = dd ;
svc−>vcpu = vc ;
r eturn svc ;

while free vdata() invoked by destroy vcpu() in case the vCPU in-
tented to be removed is currently running on a CPU, it should be added
in the not occupied bitmask:

1not yet implemented.
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i f ( svc−>oncpu != −1 ) {
spc = DIMARA PCPU( svc−>oncpu ) ;
spc−>run = NULL;
s p i n l o c k i r q s a v e (&prv−>lock , f l a g s ) ;
cpu se t ( svc−>oncpu , prv−>not occup ied ) ;
s p i n u n l o c k i r q r e s t o r e (&prv−>lock , f l a g s ) ;

}
x f r e e ( svc ) ;

The pick cpu() invoked by vcpu migrate() should give the processor
the vCPU previously run if it is available, otherwise one from the non-
occupied list2.

r eturn vc−>p r oc e s s o r ;

insert vcpu() is invoked by schedule cpu switch(). All it needs to do
is make the vCPU runnable, because previously alloc vdata has placed
it in its right pCPU as mentioned before.

svc−>s l e ep = 0 ;

wake() should prevent the awaken vCPU from sleeping and raise a sched-
ule SOFTIRQ to the corresponding pCPU so that it will be scheduled in
immediately:

svc−>s l e ep = 0 ;
c p u r a i s e s o f t i r q ( cpu , SCHEDULE SOFTIRQ) ;

sleep() should do the opposite. It puts the vCPU to sleep and raises a
schedule SOFTIRQ to the CPU it was previously running in case some-
thing else should be scheduled in (e.g. an idle vcpu that services a xen
tasklet):

svc−>s l e ep = 1 ;
i f ( cur r == vc )

c p u r a i s e s o f t i r q ( proces sor , SCHEDULE SOFTIRQ) ;

Finally, the do schedule is fast and simple; gets the processor id it is
currently running on, which is the one received the timer SOFTIRQ
discussed in section 2.7.2; it schedules in the corresponding vCPU (if
any) unless a tasklet work needs to be scheduled, in which case the idle
vCPU takes its place. The code implementing all this follows:

d imara schedu le ( const s t r u c t s chedu l e r ∗ops ,
s t im e t now , boo l t t a s k l e t work s ch edu l ed )

{
const i n t cpu = smp proce s so r id ( ) ;

2not yet implemented
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s t r u c t dimara vcpu ∗ snext ;
s t r u c t t a s k s l i c e r e t ;
s t r u c t dimara pcpu ∗pcpu = DIMARA PCPU( cpu ) ;
s t r u c t vcpu ∗ cur r = per cpu ( schedu le data , cpu ) . cur r ;

snext = pcpu−>run ;
/∗ Task let work (which runs in i d l e VCPU context )

∗ ov e r r i d e s a l l e l s e .
∗/

i f ( t a s k l e t work s ch edu l ed | |
( snext == NULL) | | snext−>s l e ep )

snext = DIMARAVCPU( id l e v cpu [ cpu ] ) ;
r e t . migrated = 0 ;
r e t . task = snext−>vcpu ;
r e t . time = ( i s i d l e v c p u ( snext−>vcpu ) ) ?

−1 : MILLISECS( 30 ) ;
r eturn r e t ;

}

To sum up we build an SMP-aware no-op scheduler that will be useful
for every domain that needs to be running continuously. That can apply
to the driver domain, some other stub-domains or even to some domU
that are excessively busy or run real-time applications.

4.3 Credit Optimizations for I/O service

The Credit scheduler is designed to provide completely fair time-sharing
to VMs that exhaust their allocated time-slice, i.e. CPU–intensive VMs.
As discussed n section 2.7.2 in detail, Credit has also a boosting mecha-
nism that temporarily favors early woken vCPUs; it inserts them in front
of others in its runqueues. That applies to I/O VMs that get woken up
from upcoming events. Adding credits debit to this concept reveals its
shortcomings; Currently the scheduler debits credits to the domain own-
ing the currently running vCPU. This accounting occurs every 10ms. It
means when VM yields the processor before 10ms pass, i.e. light I/O
case, no credits are debited to it which means that it gets favored before
one that should run bit longer. In the case of VMs with heavy I/O,
vCPUs get really often woken up from events so they get boosted all
the time, and as a result other vCPUs trailing in the runqueues get ne-
glected. On the other hand if there is always CPU work to be done an
I/O VM should wait the other to exhaust their 30ms time-slice before it
can actually run, although it might be boosted. Additionally it prevents
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migrations of a vCPU to another core if it is kind of “cache hot”. This
has a lot of meaning for a memory-bound VM, yet it does not absolutely
apply to an I/O VM. All this make Credit fall short for the extreme case
such a VM container with busy VMs running different types of work-
loads. Though, without deserting the Credit’s concept, in the following
sections we argue that there can be few minor alternatives found that
will benefit the service of exclusive I/O VMs.

4.3.1 Time-slice allocation

The easiest adjustment concerns the time-slice allocation and the ac-
counting period. We argue that reducing the maximum time a VM can
continuously run before being preempted from 30ms down to 3ms, while
accounting will occur every 1ms would result to better I/O performance.
That is due to the fairness it will provide among all vCPUs because
credits will be debited unconditionally to every domain; ftp servers with
heavy I/O would be equally treated just like web-servers performing fast
and random I/O.

The price to pay is that VMs will suffer context switch an migration
way more often; that is not a problem when scheduling is targeted to
exclusive I/O VMs, because themselves are used to block waiting for
data or devices to become available and yield the processor before the
time-slice expires and because they are not prone to cache effects as
much as CPU/Memory–bound applications. This adjustment in order
to remain useful, accounting and load-balancing must be guaranteed to
be easy and fast for the common case which applies totally to a system
with medium overcommitment as VM containers in this work discussed
(¡10 vCPUs/pCPU).

4.3.2 Anticipatory concept

Currently Credit boost I/O VMs only temporarily; as soon as they get
woken up they obtain the BOOST priority and get inserted in front of
others in the runqueues so that will be eventually picked sooner to run.
But just after it run its priority get degraded to UNDER. In this way
we do not take advantage the high probability of I/O transaction in the
near future from the same VM. We argue that in current algorithm an
anticipatory concept can be added. What we want to achieve is an I/O
VM to remain boosted for an amount of time in which we predict to
participate in a I/O operation.
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Such a concept to apply following things should be implemented: a) There
has to be a multi–hierarchical priority set. Supposing a descending one:
BOOST1, BOOST2, BOOST3, UNDER, OVER. b) When inserting a
vCPU in a runqueue it is placed after all others with the same priority.
The scheduler picks always the first in the queue to run next. c) If a VM
gets woken up (via the wake()) the scheduler annotates it a BOOST1
priority if it was in UNDER or upgrades it by one if already boosted.
d) If a VM is put to sleep (via the sleep()), i.e waiting for I/O the
scheduler will degrade its priority just by one. e) Every time an account-
ing occurs, BOOST priorities get gradually degraded . Thus a vCPU
reaches UNDER priority if it consumes all of its allocated time–slice.

To sum up, the aforementioned modifications will ensure temporary boost-
ing needed for I/O VMs running for low latency applications, as well as
a sustained boost needed for applications with random and fast I/O such
as busy web-servers. Heavy I/O such as ftp servers will be put aside in
favor of the previously mentioned.

4.4 CPU pools

Currently, CPU pools manipulation is done via a driver domain’s user
level interface. Hypercalls’ API is implemented in python and exported
by xend daemon to the dom0 user. At the moment of this writing, we
have in mind our future plan of a more dynamic partitioning of CPUs im-
plemented with a driver running in dom0, which monitors VMs’ behavior
and classifies them according to their workload characteristics. Finally
depending on its findings it could create, destroy pools with their cor-
responding schedulers, move domains among them, change the distribu-
tion of physical resources to each pool, etc. This to apply the hypercalls
needed for accessible in kernel mode. Only the following slight additions
should be made this to work:

in include/xen/interface/xen.h:

#de f i n e HYPERVISOR sysctl 35
#de f i n e HYPERVISOR domctl 36

in arch/x86/include/asm/xen/hypercall.h

#inc lude <xen/ i n t e r f a c e / s y s c t l . h>
#inc lude <xen/ i n t e r f a c e /domctl . h>

s t a t i c i n l i n e long
HYPERVISOR sysctl ( s t r u c t x en s y s c t l ∗ u s y s c t l )
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{
r eturn hyp e r ca l l 1 ( in t , s y s c t l , u s y s c t l ) ;

}

s t a t i c i n l i n e long
HYPERVISOR domctl ( s t r u c t xen domctl ∗u domctl )
{

r eturn hyp e r ca l l 1 ( in t , domctl , u domctl ) ;
}

Summarily we have designed from scratch a sort of tracing tool im-
plemented for the Xen’s event channel mechanism that is intended to
measure the time lost between event sending and handling that occurs
between netback and netfront split drivers used for domU networking.

Moreover we have designed a new modular scheduler to add it to the
existing ones of Xen. It is a SMP-aware no-op scheduler that binds
every newly created vCPU to a pCPU, if any available, so that it can
offer maximum computing power and near native parformance to the
domain beign serviced.

We have recognize the shortcomings in I/O service of Xen’s current de-
fault scheduler, Credit and proposed two optimization based on its own
concept: reducing the timeslice allocated for each vCPU; an anticipa-
tory concept that takes advantage the high propability an I/O intensive
domain has to receive or transmit data in the near future.

Finally we have ported hypercalls for pool manipulation in kernel so that
drivers are able to access them. This can be useful for future implemen-
tations that include real time VM profiling and dynamic destribution of
resources to each pool.
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Chapter 5

Towards Distinctive
Scheduling Policies and
Evaluation

Having already described all tools used for our final implementation in
chapter 4 we are able to present the steps followed towards distinctive
scheduling policies, its benefits, the issues that arise as well as explain
based on the theoretical background discussed in chapter 2 the results
experienced, while evaluating our prototype on the Xen virtualization
platform.

Testbed

Our testbed consists of an 8-core Intel Xeon X5365 @ 3.00 GHz platform
as the VM container, running Xen 4.1-unstable with linux-2.6.32.24 pvops
kernel , connected back–to–back with a 4-core AMD Phenom @ 2.3 GHz
via 4 Intel 82571EB GigaBit Ethernet controllers.

Testcases

In the following experiments we emulate network traffic and CPU/Memory-
bound applications for I/O– and CPU–intensive VMs respectively using
generic tools (dd, netcat and bzip2). We measure the execution time
of every action and calculate the aggregate I/O and CPU throughput.
To explore the platform’s capabilities we run the same experiments on
native Linux and evaluate the utilization of resources. Our results are
normalized to the maximum throughput achieved in the native case.
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We have to mention that our emulation falls short implementing different
cases of I/O. We narrow it down to heavy I/O probably performed by
a ftp or stream server. Such a workload does not suffer from the “time
uncertainty” of a random I/O (i.e. of a web-server). Thus it is easier to
profile and most important to recreate similar test-cases that could allow
you interpret your results without doubting about different execution
schemes.

Moreover, we do not focus on a per VM performance but on the system’s
overall performance and its resources utilization. In most our experi-
ments we increase the number of VMs in the VM container in order to
explore the effect of stressing the scheduler as far as the degree of over-
commitment is concerned. It is more than obvious that adding busy VMs
to the system will decrease each one performance. But that is indiffer-
ent to us. What we are trying to succeed is to sustain the performance,
the container can provide, to accepted levels. Our results can apply to
different VM containers: one can host 30 VMs with some requirements
and another can host 50 VMs with other. The latter will have only more
limited requirements.

Our basic I/O–intensive application is:

dd i f =/dev/ zero bs=$BS count=$COUNT | netcat −q 0 $IP $PORT

while our CPU/Memory bound is:

sudo dd i f =/dev/urandom of=/dev/shm/ f i l e . img count=8 bs=1M
l e t i=$TIMES
whi le [ $ i −ne 0 ] ; do

bzip2 −c /dev/shm/ f i l e . img > /dev/ nu l l
l e t i−−

done

5.1 Exploring Vulnerabilities of Current De-

fault Xen’s Setup

In this section we show that, in a busy VM container, running mixed
types of workloads leads to poor I/O performance and under-utilization
of resources.

We measure the network I/O and CPU throughput, as a function of the
number of VMs. In the default setup, we run the vanilla Xen VMM,
using its default scheduler (Credit) and assign one vCPU to the driver
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Figure 5.1: Overall Performance of the Xen Default Case

domain and to each of the VMs. We choose to keep the default CPU
affinity (any). All VMs share a single GigaBit NIC (bridged setup).

To this end, we examine two separated cases:

Exclusive CPU– or I/O–intensive VMs. Figure 5.1(a) shows that the
overall CPU operations per second are increasing until the number of vC-
PUs becomes equal to the number of physical CPUs. This is expected as
the Credit scheduler provides fair time-sharing for CPU intensive VMs.
Additionally, we observe that the link gets saturated but presents de-
creasing performance in the maximum degree of overcommitment. This
is attributed to:

a) bridging all network interfaces together,

b) the fact that the driver domain is scheduled in and out repeatedly.

Concurrent CPU– and I/O–intensive VMs. Figure 5.1(b) points out
that when CPU and I/O VMs run concurrently we experience a signifi-
cant negative effect on the link utilization (less than 40%). Taking into
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account the theoretical background we expect this kind of behavior. The
reasons justifying it are the following:

a) The fact that the driver domain is scheduled in and out repeatedly
making it impossible to service I/O requests adequately.

b) This is deteriorated by the fact that CPU–intensive VMs, once they
are scheduled in, exhaust their allocated time-slice and as a result
I/O–intensive VMs including the driver domain are stalled waiting in
the runqueues despite the fact that they may have been woken up or
having pending I/O transactions.

c) The time-slice allocated is 30 msec. The vCPU can still block long
before it expires and yield the CPU, something oftenly occurs in VMs
performing I/O. This is not the case for CPU–intensive VM, which
try to make the most of it. So the longer the time-slice the worst
impact previously described on I/O intensive VMs.

To investigate this apparent suboptimal performance , we use the mon-
itoring tool discussed in detail in section 4.1 . We run the same exper-
iments as before, i.e. concurrent CPU– and I/O– intensive VMs, but
monitor only the one of the latter.

Figure 5.2 plots the delay between domU event notification and dom0
event handling (dark area) and vice-versa (light area). We observe that
the total time lost is increasing proportionally to the degree of over-
commitment. As supposed earlier this is an artifact of vCPU scheduling:
the awaken vCPU gets stalled until it receives a time-slice to process
requests, leading to poor I/O performance.
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We notice that the domU → dom0 direction is far less “time consuming”
than the other way. The actual case is that we have a ratio 1/100 between
the number of total events in both directions. That is happening for two
reasons:

a) domU is transmitting to the client (emulating the ftp/stream server
discussed earlier) so I/O requests towards this direction can be batched
from the domU. On the other hand TCP ACK packets arriving from
the client arrive in a more random way. dom0 still notifies domU even
if only a few are available, as a result this must be repeated plenty of
times.

b) dom0 is waking up way more often due to request arriving from other
I/O guests or from incoming Ethernet packets. Thus it batches pend-
ing requests and process them more efficiently.

Although there is a significant difference between those two directions,
trying to eliminate at first just one, it could still increase performance.
This attempt leads us to the following section.

5.2 The Driver Domain Pool

To eliminate time lost in domU → dom0 data path discussed in the pre-
vious section, we decouple the driver domain from all VMs. We take
advantage of the pool concept of Xen, we launch the no-op scheduler
mentioned in section 4.2 on a separate pool running exclusively the driver
domain. VMs are deployed on different pool and suffer the Credit sched-
uler policy. To explore the effect of this kind of setup we make use of our
monitoring tool. The results confirm our hypothesis:

Figure 5.3 depicts the effect of decoupling the driver domain from the
others. We should emphasize on the following things:

a) domU → dom0 event handling latency is eliminated (dark area). In
maximum degree of overcommitment 0.691 msec are decreased to
0.011 msec.

b) dom0 → domU event handling latency is reduced by 45% (light area).

c) this behavior is expected because of the continuous awareness of the
driver domain. It is always scheduled in, and can process domU re-
quests and incoming packets way more efficiently and on time.
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Figure 5.4: Overall Performance: default Setup; 2 pools Setup

To explore the overall effect of adding the driver domain pool we run
our familiar test cases with CPU and I/O VM running concurrently.
Figure 5.4 allows us to draw following conclusions:

a) the apparent improvement of the I/O performance: we achieve Gbps
saturation in contrast to less than 40% utilization of the Default case.

b) CPU utilization is deteriorated by 43%. This can be explained taking
into account the Credit scheduler algorithm discussed in section 2.7.2
in detail. I/O VM get notified way more frequent because of the
advanced and continuous performance of the driver domain. They
get boosted, get inserted in front of CPU domain in the runqueues
and eventually steal time-slices from them. Thus CPU domains get
neglected and finally to leads suboptimal CPU utilization.
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5.3 Resources distribution vs. VM Perfor-

mance

Adopting the previous concept of decoupling the driver domain from
the VMs we dedicate a distinctive pool with one physical core we try
to eliminate the negative effect to the CPU–intensive VMs. Therefore
we experiment with physical resources distribution and specifically we
evaluate the system’s overall performance when allocating a different
number of physical CPUs to the aforementioned second pool running
exclusive 15 I/O– or CPU– intensive VMs. Figure 5.5 plots the resources
utilization versus the number of physical cores allocated to the pool.
Each time the remaining cores stay unused. Results are normalized to
the maximum performance experienced. We observe that with one CPU,
the GigaBit link is under-utilized probably due to the single runqueue
existing, whereas with two CPUs link saturation is achieved. On the
other hand, cutting down resources to the CPU-intensive VMs does not
have a negligible effect; in fact it can shrink up to 20% when only one
core is used.

5.4 Decoupling vCPUs based on workload

characteristics

Taking all this into consideration we obtain a platform with 3 pools:
pool0 with only one CPU dedicated to the driver domain with the no-op
scheduler; pool1 with 2 CPUs servicing I/O intensive VMs (running po-
tentially an I/O–optimized scheduler); and pool2 for the CPU-intensive
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VMs that suffer the existing Credit scheduling policy. Running concur-
rently a large number of VMs with two types of workloads we experience
GigaBit saturation and 62% CPU utilization, as opposed to 38% and
78% respectively in the default case (Fig. 5.6, third bar).

Misplaced VM All other
CPU -17% -1.3%
I/O +4% -0.4%

Table 5.1: VM Misplacement effect
to individual Performance

In addition to that, we point out
that there is no overall benefit if
a VM finds itself in the ”wrong”
pool, albeit a slight improvement
of this VM’s I/O performance is
experienced (Table 5.4). This is
an artifact of Credit’s fairness dis-
cussed in previous sections and
background.
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Chapter 6

Conclusions and Future Work

In this work we examine the impact of VMM scheduling in a service ori-
ented VM container and argue that co-existing scheduling policies can
benefit the overall resource utilization when numerous VMs run con-
tradicting types of workloads. VMs are grouped into sets based on their
workload characteristics, suffering scheduling policies tailored to the need
of each group. We implement our approach in the Xen virtualization plat-
form. In a moderate overcommitment scenario (4 vCPUs/ physical core),
our framework is able to achieve link saturation compared to less than
40% link utilization, while CPU-intensive workloads sustain 80% of the
default case. This negative effect on CPU performance can be eliminated
by adding up cores (e.g. in a many-core platform, where less limitation
of physical resources exists).

Our future agenda consists of exploring exotic scenarios using different
types of devices shared across VMs (multi-queue and VM-enabled multi-
Gbps NICs, hardware accelerators etc.), as well as implementing sched-
uler algorithms designed for specific cases. Specifically, we would like to
experiment with schedulers featuring multi-hierarchical priority sets, as
well as algorithms favoring low latency applications, random I/O, disk
I/O etc.

Specifically we should answer to the following questions:

• Which kind of resources partitioning could be more efficient?

• What would be the results if we had 3 different kind of workloads:
CPU,memory and I/O bound? (experiment with those kind of
benchmarks)

• How could we characterize a VM? What will be the overhead? Who
will decide?
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• Whould it make sence to have a dynamic partitioning?

• How more efficient could be a tailored made scheduler?

• Are real world scenarios (overcommitment, idle VMs, different work-
loads per VM) applicable to our concept?

• What resources utilization we achieve with our proposal in case
exotic hardware (10GbE) is used?

• Disk I/O or network/object file systems apply to our scenario?

Our findings suggest that community must dig and investigate further
the scheduling effect in Virtual Machine Containers and try to come up
with answers to previous questions in order to aim data center consolida-
tion and better resourses utilization that could eventually result to great
power savings, a more than desired outcome.
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