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Problem Statement

We focus on:

busy, service-oriented VM containers

over-committed platforms (vCPUs excel physical cores)

VMs executing diverse workloads

We address:

I/O and especially networking performance

resources under-utilization of host platforms

We argue that by altering the scheduling concept we can

boost the performace of I/O intensive VMs

improve I/O utilization of the system

with little impact on computing performance
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Motivation

Different types of workloads:
(I/O / CPU intensive, Memory bound, low latency, heavy / random I/O)

Why scheduling is related to I/O?

contradicting scheduling demands depending on workload

more than one domains participate in I/O transactions in VE

Scheduling Effects
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Contribution

Alter the scheduling concept:

Do NOT rely on a “one size fits all” scheduler

Allow co-existing scheduling policies

Partition resources (cores)

Match VMs to the corresponding scheduler (depending on workload)

Why Co-existing scheduling policies are attractive?

Unified schedulers are complex

Schedulers tailored to specific workload needs are lightweight

Facilitate reuse of existing scheduling algorithms

Achievements: (18 CPU + 18 I/O VMs in 8-core platform)

GigaBit link saturation vs. 38% utilization

sustain more than 80% of CPU utilization
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The Xen VMM - skb flow in PV

Figure: netfront-netback interaction using I/O rings and events

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 8/ 26



The Xen VMM - Scheduling Concept

Credit Scheduler Basic Characteristics

priority and credits based

30ms time-slice and 10ms accounting period

Shortcomings

VM yields the processor before accounting ⇒ no credits debited ⇒
advantage over others that run for a bit longer

BOOST vCPUs are favored ⇒ CPU-bound domains get neglected in
case of fast I/O

CPU bound VM exhaust its time-slice ⇒ I/O service gets stalled

CPU pools

a group of physical cores

a specific scheduler
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Evaluation infrastructure

Testbed

VM container:
8-core

Intel Xeon X5365 @
3.00 GHz

⇔
⇔

4xGigaBit

Client:
4-core
AMD Phenom @ 3.2
GHz

Measurement tools

Linux generic tools emulate intensive applications:

1 I/O (stream/ftp): from memory direct to network

◮ i.e. dd if=/dev/zero | netcat

2 CPU: from memory to memory

◮ i.e. bzip2 -c /dev/shm/file.img > /dev/null
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Default Setup - Vulnerabilities
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Our Monitoring Tool

Purpose

A tool that can measure the scheduling effect on I/O performance.

Design and Implementation

Concept: Measure the time spent between event occuring and handling in
network split driver model. How: Inserting time-stamps of wall time.

Additional modules

trigger to start/stop monitoring and initialize data

cookies to gather all timestamps (cookies) from each domain.

What do we eventually measure?

avg. msec lost per MB transmitted
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Default Setup - Monitoring Tool results
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yellow ≫ blue
◮ dom0 wakes up more frequently due to more I/O requests

⇒ able to batch work

overall time lost increases along with overcommitment
◮ CPU VMs exhaust their time-slice ⇒ I/O VM get stalled
◮ driver domain gets scheduled in and out repeatedly
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Decoupling dom0 from VMs - Our no-op Scheduler

Purpose

Dedicate a physical core to a vCPU and never preempt it, thus guarantee
maximum computing power and responsiveness.

Usage

Busy domains as dom0 or stubdomains, real time domains

SMP-aware Design and Implementation

track down all available cpus in the pool

every CPU is either occupied (by a vCPU) or not

attach every newly created vCPU to a non-occupied CPU

insert a vCPU in a waiting list if all CPUs are occupied

replace a destroyed vCPU with the first on the waiting list
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Decoupling dom0 from VMs - 2 pool Setup

Monitoring Tool results
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domU → dom0 (blue) eliminated
◮ dom0 never gets preempted

dom0 → domU (yellow) decreases
◮ dom0 processes requests more efficiently ⇒ more data rate available
◮ domU get notified more frequently
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Decoupling dom0 from VMs - 2 pool Setup

Resources Utilization
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Remarks

I/O vCPUs get boosted more frequently
⇒ CPU vCPUs get neglegted
⇒ CPU performance decreases
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Decoupling dom0 from VMs - 2 pool Setup

Resources destribution in pool containing the VMs
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Decoupling I/O and CPU VMs

3 pool Setup
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Decoupling I/O and CPU VMs

Misplacement effect on Individual Performance

Misplaced VM All other

CPU -17% -1.3%

I/O +4% -0.4%

VMs running similar workloads
should use the same scheduler.
Overall performance degradation
if a VM is misplaced.

Remarks

Gigabit saturation vs. 38% utilization

less than 20% decreased CPU performance

on many-cores the negative effect on CPU intensive VMs should be
negligible

we take the first step towards co-existing scheduling policies
and prove it can benefit resources utilization and overall system
performance
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Co-existing Scheduling Policies - Abstract Schematic
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Discussion for Credit Optimizations for I/O service

Timeslice allocation:
3ms vs. 30ms
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Can apply to a random I/O
workload (e.g. busy web server)

Anticipatory concept

Concept:
Take advantage of the propability of
transmitting or receiving data in the
near future.
Implementation:
Make use of multi-hierarchical
priority set
and adjust priority when a vCPU
wakes up, sleeps or gets credits
debited
Purpose:
sustain the vCPU in boost state a bit
longer
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Contribution

prove that co-existing scheduling policies benefit I/O:
◮ GigaBit link saturation vs. 38% utilization
◮ sustain more than 80% of computing performance

⋆ improves in many-cores

targeted VE:
◮ over-commited, service-oriented VM containers
◮ VMs with multiple types of workload (intensive or not)
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Future Work

Implement the anticipatory scheduler

Experiment with scheduling algorithms

make use of advanced hardware:

a) multiple NICs
b) 10GbE network adapters
c) many-core platforms
d) multi-queue and VM-enabled NICs
e) hardware accelerators

Deploy benchmarks and real-world scenarios

Implement a profiling system for dynamic system partitioning and
VMs placement
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Thanks!
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