
Coexisting scheduling policies boosting I/O Virtual
Machines

Dimitris Aragiorgis, Anastasios Nanos and Nectarios Koziris
{dimara,ananos,nkoziris}@cslab.ece.ntua.gr

Computing Systems Laboratory
School of Electrical and Computer Engineering

National Technical University of Athens

August 30, 2011

1 Introduction and Motivation

2 Background

3 Towards co-existing scheduling policies and Evaluation

4 Discussion and Future work

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 2/ 26

Table of Contents

1 Introduction and Motivation

2 Background

3 Towards co-existing scheduling policies and Evaluation

4 Discussion and Future work

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 3/ 26

Problem Statement

We focus on:

busy, service-oriented VM containers

over-committed platforms (vCPUs excel physical cores)

VMs executing diverse workloads

We address:

I/O and especially networking performance

resources under-utilization of host platforms

We argue that by altering the scheduling concept we can

boost the performace of I/O intensive VMs

improve I/O utilization of the system

with little impact on computing performance

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 4/ 26

Motivation

Different types of workloads:
(I/O / CPU intensive, Memory bound, low latency, heavy / random I/O)

Why scheduling is related to I/O?

contradicting scheduling demands depending on workload

more than one domains participate in I/O transactions in VE

Scheduling Effects

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

%
 O

ve
ra

ll
P

er
fo

rm
an

ce

Number of VMs

 CPU

 I/O

(a) exclusive

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

%
 O

ve
ra

ll
P

er
fo

rm
an

ce

Number of VMs

 CPU

 I/O

(b) mixed

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 5/ 26

Contribution

Alter the scheduling concept:

Do NOT rely on a “one size fits all” scheduler

Allow co-existing scheduling policies

Partition resources (cores)

Match VMs to the corresponding scheduler (depending on workload)

Why Co-existing scheduling policies are attractive?

Unified schedulers are complex

Schedulers tailored to specific workload needs are lightweight

Facilitate reuse of existing scheduling algorithms

Achievements: (18 CPU + 18 I/O VMs in 8-core platform)

GigaBit link saturation vs. 38% utilization

sustain more than 80% of CPU utilization

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 6/ 26

Table of Contents

1 Introduction and Motivation

2 Background

3 Towards co-existing scheduling policies and Evaluation

4 Discussion and Future work

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 7/ 26

The Xen VMM - skb flow in PV

Figure: netfront-netback interaction using I/O rings and events

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 8/ 26

The Xen VMM - Scheduling Concept

Credit Scheduler Basic Characteristics

priority and credits based

30ms time-slice and 10ms accounting period

Shortcomings

VM yields the processor before accounting ⇒ no credits debited ⇒
advantage over others that run for a bit longer

BOOST vCPUs are favored ⇒ CPU-bound domains get neglected in
case of fast I/O

CPU bound VM exhaust its time-slice ⇒ I/O service gets stalled

CPU pools

a group of physical cores

a specific scheduler

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 9/ 26

Table of Contents

1 Introduction and Motivation

2 Background

3 Towards co-existing scheduling policies and Evaluation

4 Discussion and Future work

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 10/ 26

Evaluation infrastructure

Testbed

VM container:
8-core

Intel Xeon X5365 @
3.00 GHz

⇔
⇔

4xGigaBit

Client:
4-core
AMD Phenom @ 3.2
GHz

Measurement tools

Linux generic tools emulate intensive applications:

1 I/O (stream/ftp): from memory direct to network

◮ i.e. dd if=/dev/zero | netcat

2 CPU: from memory to memory

◮ i.e. bzip2 -c /dev/shm/file.img > /dev/null

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 11/ 26

Default Setup - Vulnerabilities

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35
%

 O
ve

ra
ll

P
er

fo
rm

an
ce

Number of VMs

 CPU

 I/O

(a) CPU or I/O VMs

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

%
 O

ve
ra

ll
P

er
fo

rm
an

ce

Number of VMs

 CPU

 I/O

(b) CPU and I/O VMs

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 12/ 26

Our Monitoring Tool

Purpose

A tool that can measure the scheduling effect on I/O performance.

Design and Implementation

Concept: Measure the time spent between event occuring and handling in
network split driver model. How: Inserting time-stamps of wall time.

Additional modules

trigger to start/stop monitoring and initialize data

cookies to gather all timestamps (cookies) from each domain.

What do we eventually measure?

avg. msec lost per MB transmitted

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 13/ 26

Default Setup - Monitoring Tool results

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

2 6 16 30

m
se

c
lo

st
 p

er
 M

B
 tr

an
sm

itt
ed

Number of VMs

dom0−>domU
domU−>dom0

yellow ≫ blue
◮ dom0 wakes up more frequently due to more I/O requests

⇒ able to batch work

overall time lost increases along with overcommitment
◮ CPU VMs exhaust their time-slice ⇒ I/O VM get stalled
◮ driver domain gets scheduled in and out repeatedly

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 14/ 26

Decoupling dom0 from VMs - Our no-op Scheduler

Purpose

Dedicate a physical core to a vCPU and never preempt it, thus guarantee
maximum computing power and responsiveness.

Usage

Busy domains as dom0 or stubdomains, real time domains

SMP-aware Design and Implementation

track down all available cpus in the pool

every CPU is either occupied (by a vCPU) or not

attach every newly created vCPU to a non-occupied CPU

insert a vCPU in a waiting list if all CPUs are occupied

replace a destroyed vCPU with the first on the waiting list

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 15/ 26

Decoupling dom0 from VMs - 2 pool Setup

Monitoring Tool results

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

a b a b a b a b

m
se

c
lo

st
 p

er
 M

B
 tr

an
sm

itt
ed

2 VMs 6 VMs 16 VMs 30 VMs

dom0−>domU
domU−>dom0

(a) default Setup
(b) 2 pools Setup

domU → dom0 (blue) eliminated
◮ dom0 never gets preempted

dom0 → domU (yellow) decreases
◮ dom0 processes requests more efficiently ⇒ more data rate available
◮ domU get notified more frequently

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 16/ 26

Decoupling dom0 from VMs - 2 pool Setup

Resources Utilization

 0%

 20%

 40%

 60%

 80%

 100%

3+3 9+9 15+15

%
 (

 o
f m

ax
im

um
 p

er
fo

rm
an

ce
)

VMs (I/O+CPU)

default
2 pool

(c) CPU Overall Performance

 0%

 20%

 40%

 60%

 80%

 100%

3+3 9+9 15+15

%
 (

 o
f m

ax
im

um
 p

er
fo

rm
an

ce
)

VMs (I/O+CPU)

default
2 pool

(d) I/O Overall Performance

Remarks

I/O vCPUs get boosted more frequently
⇒ CPU vCPUs get neglegted
⇒ CPU performance decreases

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 17/ 26

Decoupling dom0 from VMs - 2 pool Setup

Resources destribution in pool containing the VMs

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7%
 o

f n
at

iv
e

m
ax

im
um

Number of CPU

Pool2 Physical Resources vs Perforfance

 CPU

 I/O

Remarks

CPU performace decreases along with the resources reduction

only two physical cores needed to saturate 1Gbps

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 18/ 26

Decoupling I/O and CPU VMs

3 pool Setup

 0%

 20%

 40%

 60%

 80%

 100%

3+3 9+9 15+15

%
 (

 o
f m

ax
im

um
 p

er
fo

rm
an

ce
)

VMs (I/O+CPU)

default
2 pool
3 pool

(e) CPU Overall Performance

 0%

 20%

 40%

 60%

 80%

 100%

3+3 9+9 15+15

%
 (

 o
f m

ax
im

um
 p

er
fo

rm
ac

e
)

VMs (I/O+CPU)

default
2 pool
3 pool

(f) I/O Overall Performance

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 19/ 26

Decoupling I/O and CPU VMs

Misplacement effect on Individual Performance

Misplaced VM All other

CPU -17% -1.3%

I/O +4% -0.4%

VMs running similar workloads
should use the same scheduler.
Overall performance degradation
if a VM is misplaced.

Remarks

Gigabit saturation vs. 38% utilization

less than 20% decreased CPU performance

on many-cores the negative effect on CPU intensive VMs should be
negligible

we take the first step towards co-existing scheduling policies
and prove it can benefit resources utilization and overall system
performance

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 20/ 26

Co-existing Scheduling Policies - Abstract Schematic

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 21/ 26

Table of Contents

1 Introduction and Motivation

2 Background

3 Towards co-existing scheduling policies and Evaluation

4 Discussion and Future work

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 22/ 26

Discussion for Credit Optimizations for I/O service

Timeslice allocation:
3ms vs. 30ms

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

4,000 800 400 200 40

Li
nk

 U
til

iz
at

io
n

%

Packet Size in Bytes

30ms
3ms

Can apply to a random I/O
workload (e.g. busy web server)

Anticipatory concept

Concept:
Take advantage of the propability of
transmitting or receiving data in the
near future.
Implementation:
Make use of multi-hierarchical
priority set
and adjust priority when a vCPU
wakes up, sleeps or gets credits
debited
Purpose:
sustain the vCPU in boost state a bit
longer

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 23/ 26

Contribution

prove that co-existing scheduling policies benefit I/O:
◮ GigaBit link saturation vs. 38% utilization
◮ sustain more than 80% of computing performance

⋆ improves in many-cores

targeted VE:
◮ over-commited, service-oriented VM containers
◮ VMs with multiple types of workload (intensive or not)

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 24/ 26

Future Work

Implement the anticipatory scheduler

Experiment with scheduling algorithms

make use of advanced hardware:

a) multiple NICs
b) 10GbE network adapters
c) many-core platforms
d) multi-queue and VM-enabled NICs
e) hardware accelerators

Deploy benchmarks and real-world scenarios

Implement a profiling system for dynamic system partitioning and
VMs placement

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 25/ 26

Thanks!

August 30, 2011 VHPC’11, Bordeaux D. Aragiorgis @ CSLab, NTUA 26/ 26

	Introduction and Motivation
	Background
	Towards co-existing scheduling policies and Evaluation
	Discussion and Future work

