
A Decision Support System for Automated
Configuration of Cloud Native ML Pipelines

Aris Spyrou
CSLAB, NTUA
Athens, Greece

aspyrou@cslab.ece.ntua.gr

Ioannis Konstantinou
Dept. of Informatics & Telecommunications

University of Thessaly
Lamia, Greece
ikons@uth.gr

Nectarios Koziris
CSLAB, NTUA
Athens, Greece

nkoziris@cslab.ece.ntua.gr

Abstract—Big Data systems like Apache Spark and Hadoop
are cornerstones of large scale data processing. However, they
are being utilized only on one or some steps of a larger
data processing pipeline. Complex data pipelines that involve
different datasets, infrastructures and programming libraries are
simplified with the use of cloud-native tools like Kubernetes and
KubeFlow, that model dependencies and manage the execution
life cycle. Nevertheless, there are no complete solutions that
are fully interoperable with Apache Spark and Kubeflow in
an on-premises setup. In this work, we extend the Kubeflow
Pipelines tool to support on-premises Apache Spark clusters.
We experimentally evaluate our tool on an industry standard
Big Data benchmark with various infrastructure and dataset
configurations. We utilize the collected knowledge regarding
Spark’s performance to train a Decision Tree-based ML system
that can detect the optimal cluster configuration according to user
constraints and predict query execution time. The system can be
used by non-experts through a comprehensive GUI. We finally
provide open-source implementations of both Apache Spark’s
Kubeflow integration and the Decision Support System.

Index Terms—kubeflow, cloud-native, TPC-DS, Apache Spark

I. INTRODUCTION

Due to the large amount of data generated through various
digital activities such as for example from internet applica-
tions, from electric cars, and household appliances (smart
refrigerators, air conditioners, etc.), there is often a need to
process this information with the ultimate aim of extracting
useful knowledge. Using data analysis tools as well as machine
learning techniques/algorithms one can reach useful conclu-
sions that sometimes have commercial or research value. At
the same time, a rapid growth in cloud computing has been
observed in recent years, both in terms of computing and
storage infrastructure. Advances in hardware technology have
dropped prices and increased capabilities. This has allowed
big “hyperscalers” like Amazon (AWS), Google (GCP), and
Microsoft (Azure) to offer attractive and cost-effective cloud
computing service platforms.

This research has been co-financed by the European Regional Development
Fund of the European Union and Greek national funds through the Operational
Program Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH – CREATE – INNOVATE (project DataSource, code:T2EDK-
01231) and by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 101036388 (ZeroW)

Among other services, these platforms offer environments
for creating and managing lightweight virtualization “ma-
chines” called containers. Through containers, a reduction in
the project implementation times is achieved, as all modern
data analytics frameworks are capable of utilizing this in-
frastructure (i.e., they are “containerized”) and offer a rapid
environment in a hassle-free manner. Google’s Kubeflow [1]
is such a system which runs exclusively on a container
orchestration engine called Kubernetes or commonly K8s [2].
Kubeflow is a system that simplifies the implementation of ML
flows in K8s frameworks, following the MLOps paradigm [3].
Among other tools, it contains Kubeflow Pipelines (KFP) [4]
where developers can create data processing flows in the form
of directed acyclic graphs (DAG) with each node representing
a processing stage or a “component”. KFP mainly targets and
supports Google’s GCP platform.

The Distributed data processing software ecosystem is
mainly dominated by Apache Spark [5]. Apache Spark is a
scalable framework capable of distributing data and computa-
tion tasks over a remote cloud or on-premises infrastructure
and offers data science and machine learning packages. It sup-
ports multiple programming languages (Python, Java, Scala,
R, SQL). There is now a project [6] trying to integrate Spark
into the Kubernetes ecosystem to make it possible to exploit
its orchestration capabilities for the Spark engine achieving
faster processing and flexibility.

The main contributions of this work are the following:
• We extend KFP to offer native support for pipelines

including Spark operator components while smoothly
supporting on-premises or public cloud resources as well
as to launch Spark workloads.

• We evaluate Spark on KFP with various analytic work-
loads over different computing resources using the pop-
ular TPC-DS benchmark [7].

• We train a decision tree to identify the optimal infras-
tructure type and size in terms of execution time or
cost according to the applied workload and the user’s
constraints.

• We develop a decision support system (DSS) for Spark
configuration on the cloud using regression techniques.
We offer this tool through a graphical interface that guides
the user in making decisions when it comes to choosing

Cloud2Things 2024: 4 Workshop on From Cloud to Things: harnessing pervasive data in the Computing Continuum

979-8-3503-0436-7/24/$31.00 ©2024 IEEE 215

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 P

er
va

si
ve

 C
om

pu
tin

g 
an

d 
C

om
m

un
ic

at
io

ns
 W

or
ks

ho
ps

 a
nd

 o
th

er
 A

ff
ili

at
ed

 E
ve

nt
s (

Pe
rC

om
 W

or
ks

ho
ps

) |
 9

79
-8

-3
50

3-
04

36
-7

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

Pe
rC

om
W

or
ks

ho
ps

59
98

3.
20

24
.1

05
02

87
0

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on April 29,2024 at 09:07:49 UTC from IEEE Xplore.  Restrictions apply. 



resources for running workloads while respecting her
constraints in terms of execution cost or time.

• Our code for both the KFP operator and the DSS is open-
sourced1.

II. PRELIMINARIES

The aim of this section is to present a very brief background
regarding the system(s) tackled in this work.

Kubernetes also known as k8s [2] is an open source con-
tainer orchestration platform that automates the declaration,
management and scaling of applications running in containers.
The most basic term in the k8s ecosystem is the cluster. A
cluster consists of machines in on-premise, public, private and
hybrid cloud infrastructures. The cluster contains two parts: the
control plane and the computing nodes. Each node can be a
physical or a virtual machine. Each node runs “pods” and each
pod contains one or more containers. The control plane runs
on the master node of the cluster. The control plane consists of
the kube apiserver, kube scheduler, kube controller manager
and etcd modules. The compute nodes consist of the kubelet
pod (the main agent that contacts the master node), the kube
proxy pod (manages network-related issues) and the container
runtime.

Kubeflow [1] is a suite of tools that enables data scientists
to create ML workflows more easily in K8s environments.
Through Kubeflow, an integrated ML solution can be cre-
ated using well-known tools such as Jupyter Notebooks [8],
PyTorch [9] and TensorFlow [10]. Kubeflow automates the
process of installing, configuring, and maintaining the nec-
essary dependencies so that a user can focus on building
the ML model rather than the supporting K8s infrastructure.
The main notion of Kubeflow is a pipeline. A pipeline is a
description of an ML workflow including all components in
the workflow and how they are combined in the form of a
graph. Pipelining involves defining the job parameters required
to run the pipeline and the data inputs and outputs of each
component. A pipeline component is a self-contained set of
code, packaged as a Docker image, that executes a step in
the pipeline. For example, a component can be responsible
for data preprocessing, data transformation, model training,
and so on. Kubeflow pipelines is a platform for building and
deploying portable, scalable container-based machine learning
workflows. To facilitate the easy deployment of Kubeflow,
Canonical’s Juju [11] tool is utilized. Juju is a tool for manag-
ing large and complex cloud deployments. It contributes to the
management of the overall deployment cycle and “connects”
various deployments together in an easy way.

Apache Spark’s architecture is based on the resilient
distributed dataset (RDD) [12], a set of multiple read-only
data items distributed across a cluster of machines, which is
maintained in a fault-tolerant manner. Within Apache Spark
the execution is managed as a directed acyclic graph (DAG).
Nodes represent RDDs while edges represent RDD operations.
Apache Spark requires a cluster scheduler and a distributed file

1https://github.com/AriSpyrou/spark-kfp-hdfs-k8s

system. The cluster scheduler can be either a built-in scheduler
or another stand-alone scheduler such as Hadoop YARN [13],
Apache Mesos [14] or Kubernetes. For distributed storage,
Spark can interface with a wide variety of solutions, including
Hadoop Distributed File System (HDFS) [15], Cassandra [16],
OpenStack Swift [17], Amazon S3 [18], etc. In our setup we
utilize an HDFS cluster.

The Spark k8s operator is a tool developed by a team
within Google aimed at integrating the Spark environment
into the K8s ecosystem. The operator can be installed with
the use of the helm K8s package manager tool [19] using
the instructions in the relevant repository [6] maintained by
Google Cloud Platform.

The Spark operator consists of:
• An event-based SparkApplication controller that listens

for the creation, update, and deletion events of SparkAp-
plication objects,

• a submit executor that runs spark-submit for submissions
it receives from the controller,

• a Spark pod watcher that monitors Spark pods and sends
status updates to the SparkApplication controller,

• a Mutating Admission Webhook [20] that handles cus-
tomization for the Spark driver and worker pods based
on the pod annotations added by the controller,

Specifically, the user uses sparkctl (or kubectl) to create
a SparkApplication object. The SparkApplication controller
receives the object via an observer from the API server,
creates a job that takes the spark-submit arguments, and sends
the job to the job executor. The job executor submits the
application for execution and creates the application driver
pod. At startup, the master pod spawns the worker pods. While
the application is running, the Spark monitor checks the state
of the application pods and sends state updates of the pods
back to the controller, which then accordingly updates the
application state.

III. INTEGRATING APACHE SPARK WITH KUBEFLOW
PIPELINES

Figure 1 describes the system architecture and the interac-
tion with a user. A user accesses Juju CLI and HDFS CLI as
shown by the arrows (to the left and right of the user), while
different users (e.g., administrator or developers) have access
to kubectl each with specific rights. In the top we depict the
k8s system modules that consist of the “computation” part of
our approach whereas in the bottom we depict the “data” part
of our approach. In addition, it shows the process of launching
a new Spark cluster inside the stage of a KFP, then passes the
request to the Spark Operator which in turn starts a driver.

A. A Cloud-native Spark Operator for kubeflow

We could follow two approaches to launch Spark on our
KFP enabled k8s: the “traditional” option would be to install
Spark outside the k8s environment and execute workloads
by setting Spark to use the kube-api address as master. This
approach would then create container workers on the cluster.
The alternative that was eventually followed is to use the Spark

Cloud2Things 2024: 4 Workshop on From Cloud to Things: harnessing pervasive data in the Computing Continuum

216
Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on April 29,2024 at 09:07:49 UTC from IEEE Xplore.  Restrictions apply. 



Juju CLI User

Pipeline Step

Apply Spark Job Manifest

Pipeline Step

Kubeflow  
Pipelines

Spark Operator

Spark Driver

Spark Workers

Juju
Controller kubectl

Node 1 Node 2 Node 3

Node 5Node 4

Namenode
Datanode

Datanode Datanode

DatanodeDatanode

Fig. 1: System Architecture.

Operator described in the previous chapter that targets k8s
clusters. This “cloud-native” approach is now considered a
more robust way to use Spark in a cloud computing context,
and especially when it comes to public clouds where the
machines themselves are often not accessible.

To achieve managing a Spark workload through KFP we
first need to look at how tasks are declared in the Spark
Operator for Kubernetes. The declaration is made in the form
of SparkApplication objects in kube-api via kubectl. Those
objects are declared with the use of YAML files that contain
the following job information:

• The programming language in which the main executable
file was written.

• The docker image which contains a compatible version
of Spark Operator for K8s and which will run in the
containers that will run the code.

• The file that contains the source code to be executed.
This file can be inside the image that is loaded or in
some cloud storage, or in a persistent Volume [21].

• The number and type of instances, i.e workers for the
workload. The important fields are “cores” and “memory”
that set instance infrastructure, i.e., cores and memory.

The developed pipeline that integrates Spark on KFP con-
sists of simple components that already exist in the basic
version of KFP. The pipeline contains two main Spark task
execution nodes (i.e., Master nodes), status control nodes and
helper nodes. Master nodes start the Spark cluster. These are
processes that read the manifest file of a SparkApplication
and then use the KFP API to create new containers. At the
end they return the name of the created SparkApplication as
this is dynamic. Of more interest are status control nodes that
manage the course of the pipeline flow. These are two nodes
that were developed for the purpose of monitoring the lifetime
of a SparkApplication operation. This is required since in a
later stage of the pipeline another component may need to
wait for the Spark workflow to complete before starting as

Fig. 2: An ML kubeflow Pipeline with Apache Spark

it may depends on the Spark’s results. Furthermore, because
core nodes do not interact with the Spark environment, the
execution state is not natively communicated to KFP. To
address this, two container functions were developed that
check the execution status by issuing calls to the kube-api
through the kubectl tool. These functions are based on the
kubectl image with version 1.21.12-debian-10-r32 of bitnami
and work with the polling method. Finally, helper nodes
control the result of the status check. They issue requests to the
kube-api while the SparkApplication’s status is “RUNNING”.
In practice the SparkApplication can have one of the states
“RUNNING”, “FAILED” or “COMPLETED”. If the status
becomes “FAILED” a simple error message is output while
if the status becomes “COMPLETED” the helper node allows
the pipeline to continue to the following nodes.

B. A Cloud-native ML Pipeline with Apache Spark

In order to evaluate our system we chose to run a rel-
atively simple ML workflow. In Figure 2 we present our
pipeline implementation. The pipeline uses a dataset that
comes from the well-known UC Irvine Machine Learning
repository. Specifically the goal is to start and manage the
state of a Spark workflow within the flow context of a KFP.
The data set [22] refers to data from the US population census
in 1994. The goal of the ML model is the classification of
individuals into two levels based on income. The training and
evaluation process consists of the following stages:

• Upload to HDFS: Before any action is taken the data
must be uploaded to HDFS in order to be accessible by all
possible Spark worker nodes. This is the only stage that is
somehow “manually” done by a client that communicates
with the name node and has the files that make up the
dataset on the local file system.

• Dataset Exploration: In this stage a check was made in
order to become familiar with the data and to decide what

Cloud2Things 2024: 4 Workshop on From Cloud to Things: harnessing pervasive data in the Computing Continuum

217
Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on April 29,2024 at 09:07:49 UTC from IEEE Xplore.  Restrictions apply. 



1-
1-

1

1-
1-

2

1-
1-

3

1-
2-

1

1-
2-

2

1-
2-

3

1-
3-

1

1-
3-

2

1-
3-

3

2-
1-

1

2-
1-

2

2-
1-

3

2-
2-

1

2-
2-

2

2-
2-

3

2-
3-

1

2-
3-

2

2-
3-

3

3-
1-

1

3-
1-

2

3-
1-

3

3-
2-

1

3-
2-

2

3-
2-

3

3-
3-

1

3-
3-

2

3-
3-

3

4-
1-

1

4-
1-

2

4-
1-

3

4-
2-

1

4-
2-

2

4-
2-

3

4-
3-

1

4-
3-

2

4-
3-

3

Configuration (# of instances - # of cores per instance - RAM GB)

10

100
Ti

m
e 

(s
ec

) Q64 Q70 Q80

Fig. 3: Execution time of different types of TPC-DS queries for various cluster configuration sizes.

kind of transformations to apply. For the purposes of this
step, an interactive Jupyter Notebook running in a Docker
container on a computer outside the array was used.

• Pre-processing: Before model training, it is necessary to
deal with problematic records. Processed data is cached
in HDFS.

• Training: At this point a machine learning model is
trained on the entire training set.

• Prediction: Finally, the model is evaluated based on its
performance in the record classification from the control
set.

The program is written in Python 3.9. The fully distributed
framework SparkMLLib [23] was chosen to run the machine
learning algorithm and preprocessing. Due to the fact that it
is an application that runs inside a container, it is necessary
to create an appropriate image. The main image on which
the final one was based is that of the Spark Operator for
Kubernetes (spark-operator/sparkpy v3.1.1) and an image
was created to which the numpy library was added as it
is necessary for the operation of Spark MLlib. The final
image used can be found on DockerHub under the name
https://hub.docker.com/repository/docker/arisspyrou/spark-py.
The Python code that is required by KFP is placed in HDFS.

IV. EXPERIMENTAL EVALUATION

In this chapter we present our experiments.

A. Evaluation Setup

As our benchmark (i.e., dataset and query workload) we
selected TPC-DS [7], a well-known industry benchmark. TPC-
DS is the de-facto benchmark for measuring the performance
of decision support solutions, including Big Data systems.
TPC-DS models retail product suppliers data. Its schema, data
population, queries, data maintenance model and application
rules are designed to be representative of modern decision
support systems.

The initial benchmark consists of 99 different queries that
examine all aspects of a system in detail to derive a more
objective assessment of a system’s capabilities. For this work,
we chose to run 3 queries related to different types of work-
loads. Specifically, the queries q64, q70 and q82 were selected
which are demanding in terms of network shuffle, CPU and
I/O respectively, covering a wide spectrum of resource usage
types.

The query execution was performed using the respective
YAML manifest file and the container image file that contains
the benchmark downloaded from AWS. The process is done

in two parts: first, a workload creates the synthetic dataset
and after this process is completed it is then possible to de-
clare query workloads with various parameters. The synthetic
dataset consists of 5 partitions with a scale factor of 10 and a
parquet file type. The produced data is stored in HDFS. For the
experiments, the container running the Spark driver is assigned
2 vCPUs and 3 GB of RAM. Regarding the worker nodes,
36 experiments of 3 repetitions each have been performed
for greater accuracy with combinations of vCPU, RAM and
instances numbers with the following restrictions:

• RAM can be 1, 2 or 3 GB as larger values can cause
OOM errors.

• vCPUs can be 1, 2 or 3 as each machine has 4 and one
is reserved for the smooth system operation.

• The instances can be from 1 to 4.

B. Results

We executed three queries: one that is demanding in network
shuffle, one in CPU and one in I/O which will be mentioned
with their codes q64, q70 and q82 respectively. q64 proved
to be the most demanding overall with a range of 283 to 41
seconds with 1 worker, 1 core and 1 GB RAM and 4 workers,
3 cores (each) and 1 GB RAM configuration. On the contrary,
the other two queries, q70, q82, have a range of 34 to 6 sec
and 61 to 8 sec respectively.

We continue the description of our experiments following
the X.Y.Z notation, where X depicts the worker number, Y the
cores per worker and Z the memory in GB per worker, whereas
the time is measured in seconds. As can be seen from Figure
3, as the number of workers and cores increase, the execution
time clearly decreases (notice the log scale in y axis). This
does not hold in the case of memory. It appears for example in
q64 and in the parameterizations 4.3.1, 4.3.2, 4.3.3 (rightmost
three bars) that the query time increases when we increase the
memory. This cannot be attributed anywhere but to the fact
that there are fluctuations in times based on external factors
(e.g. background processes). Due to the fact that the data set is
divided into 5 partitions and consists of a total of 10GB, each
partition is around 2GB. This is confirmed in some cases such
as in q64 and q82 with 1,1,X parameterization since we see
that the times drop from 283 (1 GB RAM) to 215 (2 GB RAM)
and 228 (3 GB RAM) and from 60.5 ( 1 GB RAM) to 42 (2 GB
RAM) and 43 (3 GB RAM) respectively. Another interesting
observation is that both the number of cores and the cluster
size that the cores are distributed across are important for the
query performance. For example we see that the times are 70.5
(q64), 8.6 (q70), 14 (q82) for config 4.1.2 and 85.7 (q64),

Cloud2Things 2024: 4 Workshop on From Cloud to Things: harnessing pervasive data in the Computing Continuum

218
Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on April 29,2024 at 09:07:49 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Pearson correlation coefficient of execution time vs
different infrastructure resources

Time q64 Time q70 Time q82

Workers -0.636657 -0.622510 -0.632972
Cores -0.549904 -0.540662 -0.551698
RAM -0.132204 -0.251986 -0.251986 -0.190437

12.8 (q70) and 18.1 ( q82) for parameterization 2.2.2. This
improvement is about 17.6%, 32.8% and 22.1% respectively
and shows that it is generally better to distribute tasks among
many workers than among many worker threads.

We see that there is a general trend of exponentially decreas-
ing execution time as the number of workers increases. We
notice that as the number of workers increases, the difference
between the times of the experiments with 1 core compared
to the rest of the experiments in the column (i.e., with the
same number of workers) decreases. Finally, we can observe
that when we increase the number of cores per worker the
query slows down. For example, for 1 worker we see that the
difference between 1 core and 3 cores is about 176 seconds in
the case of 1 GB RAM. Conversely for configurations 4.1.1
and 4.3.1 it is 38.5 seconds.

Finally, we present Table I with Pearson correlation coef-
ficients for the pairs between workers, cores, RAM and time
for each query. We notice that the number of workers is the
most important factor in reducing query time. The number of
cores also seems to matter. It is worth noting that we see low
variation in the values in the first and second rows of the table.
We notice that the RAM size does not play as big a role in
reducing query time. However, what is interesting in the third
row is that there is more variation between queries.

V. A DECISION SUPPORT SYSTEM FOR
WORKLOAD-AWARE AUTOMATIC INFRASTRUCTURE

CONFIGURATION

After the evaluation of the system and the data collection
concerning the system performance based on different combi-
nations of settings, we develop a decision support system that
utilizes this knowledge and unifies the obtained information.
This system consists of:

• Database: It contains the experiments extracted informa-
tion.

• Model: This is the set of input parameters that can be set
and the ML model developed.

• User Interface: It allows the user to define her preferences
and get the proposed configurations.

The final goal of this work is the knowledge extraction
regarding the optimization of the parameterization of Spark
clusters taking into account the time and the cost of an
experiment.

As we have mentioned above, experiment execution times
concern three different queries, each of which has different
qualitative characteristics. These three represent the different
input workloads. As shown in Figure 3, as the instances and
cores increase, the execution time is minimized. However, the

Fig. 4: Decision Support System User Interface

more workers running inside Spark, the greater the overhead
for the small processes that each one executes. This results
in a non-linear time increase, while at the same time showing
a large degree of variability between iterations as processes
running in the background and other maintenance processes
running by K8s affect the final flow time.

Despite the variability and wide variation observed in query
executions, it was deemed appropriate to implement a system
that provides support to users when selecting configurations
for the workloads they run. For this purpose, a tool was
developed in the form of a web app that through its graphical
environment one can get a first picture of how a potential
workload is going to run. In Figure 4 we present the developed
User Interface.

The tool has two main operation modes. The first mode
identifies the optimal configuration of Spark from the follow-
ing options:

• Choice of workload type between 4 alternatives: Bal-
anced, Network Shuffle Heavy, CPU Heavy and I/O
Heavy.

• Data set size selection with 4 alternatives : 10, 100, 1000,
10000.

• Specify either a time (seconds) or cost limit (i.e., a
constraint).

In this mode the system trains two decision trees on a
suitable subset of the data derived from the experiments and
makes an estimate for the best possible parameterization of
the Spark cluster taking into account user constraints.

The second mode estimates the time and cost given a con-
figuration in order to run a workload with the aforementioned

Cloud2Things 2024: 4 Workshop on From Cloud to Things: harnessing pervasive data in the Computing Continuum

219
Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on April 29,2024 at 09:07:49 UTC from IEEE Xplore.  Restrictions apply. 



TIME <= 80.57
squared_error = 0.86

samples = 36
value = [[2.5]

[2.0]
[2.0]]

TIME <= 68.55
squared_error = 0.62

samples = 20
value = [[3.25]

[2.25]
[2.1]]

True

TIME <= 83.39
squared_error = 0.57

samples = 16
value = [[1.56]

[1.69]
[1.88]]

False

TIME <= 62.06
squared_error = 0.51

samples = 16
value = [[3.12]

[2.56]
[2.06]]

TIME <= 76.03
squared_error = 0.29

samples = 4
value = [[3.75]

[1.0]
[2.25]]

TIME <= 59.04
squared_error = 0.47

samples = 13
value = [[3.31]

[2.54]
[2.23]]

squared_error = 0.22
samples = 3

value = [[2.33]
[2.67]
[1.33]]

TIME <= 45.88
squared_error = 0.43

samples = 11
value = [[3.45]

[2.64]
[2.09]]

squared_error = 0.08
samples = 2
value = [[2.5]

[2.0]
[3.0]]

TIME <= 42.48
squared_error = 0.38

samples = 4
value = [[3.75]

[2.5]
[2.25]]

TIME <= 52.35
squared_error = 0.42

samples = 7
value = [[3.29]

[2.71]
[2.0]]

squared_error = 0.42
samples = 2
value = [[3.5]

[3.0]
[2.0]]

squared_error = 0.08
samples = 2
value = [[4.0]

[2.0]
[2.5]]

TIME <= 50.17
squared_error = 0.32

samples = 5
value = [[3.0]

[2.8]
[2.0]]

squared_error = 0.42
samples = 2
value = [[4.0]

[2.5]
[2.0]]

squared_error = 0.15
samples = 3
value = [[3.0]

[2.67]
[1.67]]

squared_error = 0.42
samples = 2
value = [[3.0]

[3.0]
[2.5]]

squared_error = 0.08
samples = 2
value = [[4.0]

[1.0]
[2.5]]

squared_error = 0.42
samples = 2
value = [[3.5]

[1.0]
[2.0]]

squared_error = 0.08
samples = 2
value = [[1.0]

[3.0]
[2.5]]

TIME <= 104.99
squared_error = 0.5

samples = 14
value = [[1.64]

[1.5]
[1.79]]

TIME <= 91.94
squared_error = 0.25

samples = 4
value = [[2.5]

[1.5]
[1.5]]

TIME <= 116.78
squared_error = 0.45

samples = 10
value = [[1.3]

[1.5]
[1.9]]

squared_error = 0.08
samples = 2
value = [[2.0]

[2.0]
[1.5]]

squared_error = 0.08
samples = 2
value = [[3.0]

[1.0]
[1.5]]

squared_error = 0.3
samples = 3
value = [[1.0]

[2.33]
[2.0]]

TIME <= 136.08
squared_error = 0.35

samples = 7
value = [[1.43]

[1.14]
[1.86]]

squared_error = 0.08
samples = 2
value = [[2.0]

[1.0]
[2.5]]

TIME <= 181.67
squared_error = 0.32

samples = 5
value = [[1.2]

[1.2]
[1.6]]

squared_error = 0.17
samples = 2
value = [[1.5]

[1.5]
[1.0]]

squared_error = 0.22
samples = 3
value = [[1.0]

[1.0]
[2.0]]

Fig. 5: Decision tree trained for network shuffle heavy work-
load on 10GB dataset. It predicts the parameterization taking
as input the execution time

INST <= 1.5
squared_error = 2962.91

samples = 36
value = 91.16

CORE <= 1.5
squared_error = 4637.15

samples = 9
value = 152.5

True

CORE <= 1.5
squared_error = 732.21

samples = 27
value = 70.71

False

squared_error = 868.49
samples = 3

value = 242.24

CORE <= 2.5
squared_error = 481.51

samples = 6
value = 107.63

squared_error = 234.55
samples = 3

value = 124.81

squared_error = 138.57
samples = 3

value = 90.46

INST <= 2.5
squared_error = 636.67

samples = 9
value = 99.42

INST <= 2.5
squared_error = 161.85

samples = 18
value = 56.35

squared_error = 173.71
samples = 3

value = 130.38

INST <= 3.5
squared_error = 149.23

samples = 6
value = 83.94

squared_error = 110.34
samples = 3

value = 93.23

squared_error = 15.34
samples = 3

value = 74.64

RAM <= 2.5
squared_error = 147.54

samples = 6
value = 69.09

CORE <= 2.5
squared_error = 47.44

samples = 12
value = 49.99

CORE <= 2.5
squared_error = 87.52

samples = 4
value = 75.38

squared_error = 29.62
samples = 2

value = 56.49

squared_error = 1.03
samples = 2

value = 84.71

squared_error = 0.22
samples = 2

value = 66.06

INST <= 3.5
squared_error = 59.46

samples = 6
value = 52.13

INST <= 3.5
squared_error = 26.26

samples = 6
value = 47.85

squared_error = 56.75
samples = 3

value = 56.74

squared_error = 19.73
samples = 3

value = 47.52

squared_error = 10.7
samples = 3

value = 46.18

squared_error = 36.24
samples = 3

value = 49.52

Fig. 6: Decision tree trained for network shuffle heavy work-
load on 10GB dataset. It predicts the execution time taking as
input a parameterization

options. In this mode we do not take into account the user
constraints, as we want to calculate the time and cost for a
given parameterization. As in the previous mode, a decision
tree is trained on a subset of the data.

A. Decision Trees

The training process is directly related to the user’s choices
in the developed interface. For example, if he/she chooses a
network shuffle heavy load type, then the trained decision tree
will only utilize the data generated for the query q64 as its
training dataset. This is done to increase the accuracy of the
model as much as possible as we know in advance the type
of load we want to predict. A further improvement made is
to limit the leaves of the tree to achieve better generalization
but also to eliminate the influence of outliers. This was done
by increasing the minimum number of data per leaf to 2.
Practically this means that if we want to further split a leaf then
after the split the new leaves must have at least 2 values. This
practice is quite common in regression. Figures 5 and 6 show
two decision tree samples. Both trees are for network shuffle
heavy workloads on 10GB datasets. The first tree is used to

predict parameterization by setting the execution time, while
the second one does exactly the opposite, i.e. it predicts the
execution time based on a user-given parameterization.

VI. CONCLUSIONS

In this work we extended Apache Spark to allow its ex-
ecution on a cloud-native ML pipeline through KubeFlow, a
popular MLOps tool developed by Google. Using this tool, we
performed an experimental evaluation of Apache Spark under
various analytical workloads using the TPC-DS benchmark
and different cluster configurations in a private cloud setup.
The experiments provided us with valuable insights regarding
Spark’s behavior. We modeled those insights in the form
of a Decision-Tree based DSS. We provide an open-source
implementation that through a comprehensive GUI users can
detect the optimal cluster configuration for given queries under
constraints, or predict query execution times for various cluster
configurations.

REFERENCES

[1] Kubeflow. [Online]. Available: https://www.kubeflow.org
[2] Kubernetes. [Online]. Available: https://kubernetes.io/
[3] D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine Learning Pperations

(MLOps): Overview, Definition, and Architecture,” IEEE Access, 2023.
[4] Kubeflow Pipelines. [Online]. Available:

https://www.kubeflow.org/docs/components/pipelines/introduction/
[5] M. Zaharia et al., “Apache Spark: a Unified Engine for Big Data

Processing,” Communications of the ACM, vol. 59, no. 11, pp. 56–65,
2016.

[6] Kubernetes Operator for Apache Spark. [Online]. Available:
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator

[7] R. O. Nambiar and M. Poess, “The making of tpc-ds.” in VLDB, vol. 6,
2006, pp. 1049–1058.

[8] Jupyter Notebooks. [Online]. Available: https://jupyter.org/
[9] A. Paszke et al., “Pytorch: An Imperative Style, High-performance Deep

Learning Library,” Advances in neural information processing systems,
vol. 32, 2019.

[10] M. Abadi et al., “TensorFlow: a System for Large-Scale Machine
Learning,” in OSDI 16, 2016, pp. 265–283.

[11] Canonical Juju. [Online]. Available: https://juju.is/
[12] M. Zaharia et al., “Resilient Distributed Datasets: A Fault-Tolerant

Abstraction for In-Memory Cluster Computing,” in NSDI 12, 2012, pp.
15–28.

[13] V. K. Vavilapalli et al., “Apache Hadoop YARN: Yet Another Resource
Negotiator,” in SoCC, 2013, pp. 1–16.

[14] B. Hindman et al., “Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center,” in NSDI 11, 2011.

[15] K. Shvachko et al., “The Hadoop Distributed File System,” in MSST.
Ieee, 2010, pp. 1–10.

[16] A. Lakshman and P. Malik, “Cassandra: a Decentralized Structured
Storage System,” ACM SIGOPS operating systems review, vol. 44, no. 2,
pp. 35–40, 2010.

[17] OpenStack Swift. [Online]. Available:
https://wiki.openstack.org/wiki/Swift

[18] Amazon S3. [Online]. Available: https://aws.amazon.com/s3/
[19] HELM. [Online]. Available: https://helm.sh/
[20] Mutating Admission Webhook. [Online]. Avail-

able: https://kubernetes.io/docs/reference/access-authn-authz/admission-
controllers

[21] Kubernetes Volumes. [Online]. Available:
https://kubernetes.io/docs/concepts/storage/volumes/

[22] B. Becker and R. Kohavi, “Adult,” UCI Machine Learning Repository,
1996, DOI: https://doi.org/10.24432/C5XW20.

[23] X. Meng et al., “MLlib: Machine Learning in Apache Spark,” The
journal of machine learning research, vol. 17, no. 1, pp. 1235–1241,
2016.

Cloud2Things 2024: 4 Workshop on From Cloud to Things: harnessing pervasive data in the Computing Continuum

220
Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on April 29,2024 at 09:07:49 UTC from IEEE Xplore.  Restrictions apply. 


