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ABSTRACT Deep learning plays a pivotal role in numerous big data applications by enhancing the
accuracy of models. However, the abundance of available data presents a challenge when training neural
networks on a single node. Consequently, various distributed training methods have emerged. Among
these, two prevalent approaches are All-Reduce and Parameter Server. All-Reduce, operating synchronously,
faces synchronization-related bottlenecks, while the Parameter Server, often used asynchronously, can
potentially compromise the model’s performance. To harness the strengths of both setups, we introduce
Strategy-Switch, a hybrid approach that offers the best of both worlds, combining speed with efficiency and
high-quality results. This method initiates training under the All-Reduce system and, guided by an empirical
rule, transitions to asynchronous Parameter Server training once the model stabilizes. Our experimental
analysis demonstrates that we can achieve comparable accuracy to All-Reduce training but with significantly
accelerated training.

INDEX TERMS Deep learning, distributed systems, all-reduce, parameter server.

Recent years have witnessed an exponential interest
increase in the field of deep learning [1]. Such techniques
have been widely adopted across various scientific domains,
particularly in applications such as image classification [2],
[3], [4], segmentation [5], [6], [7], speech recognition [8],
[9], [10], and text classification [11], [12], [13]. Adaptation
and evolution of network architectures to improve predictive
precision remains an ongoing pursuit. Derived from the image
classification domain, a notable example is identified on
the Imagenet dataset [14], where continuous efforts persist
to enhance its prediction accuracy [15], [16], [17], [18],
[19], [20].

Concurrently, the volume in available data [21], [22]
has rendered training on a single computing node time-
prohibitive, even when leveraging accelerators like GPUs.
Consequently, to tackle the explosion in data amount,
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engineers and researchers have turned to distributed environ-
ments employing data parallelism. Such distributed setups,
adopted widely across various distributed execution sys-
tems [23], [24], [25], [26], involve participating machines
utilizing different segments of training data and local model
copies to generate a unified global model.

To address the need for distributed learning, researchers
have proposed varied architectures based on data paral-
lelism. Notably, two fundamental distributed deep learning
architectures, All-Reduce [27], [28], [29] and Parameter
Server [30], [31], [32], [33], have emerged. All-Reduce
is a decentralized architecture where participating peers
synchronize computed gradients using all-reduce primitives,
updating their local models. Conversely, Parameter Server is
a centralized architecture featuring servers hosting key-value
stores for the global model, with workers training local
model copies and updating the global model via gradients
sent to the server. Workers under the Parameter Server
can either perform the server model update synchronously
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FIGURE 1. All-Reduce architecture: Dashed lines indicate communication,
while solid lines indicate data extraction.

or asynchronously, but lack of synchronization is usually
preferred when adopting Parameter Server.
While All-Reduce and Parameter Server offer distinct

advantages and drawbacks, their nature yields contrasting
challenges. Synchronous decentralized architectures like All-
Reduce face synchronization-related overheads [34] but
exhibit convergence akin to single-node training. In contrast,
the centralized nature of Parameter Server risks network
hotspots in the server [35], potentially compromising model
quality due to outdated parameters [36]. Despite synchro-
nization hurdles, asynchronous training in Parameter Server
expedites the training process.

In light of these considerations, there is a growing need
to clarify the interplay between deep learning convergence
requirements and system-level performance constraints,
in order to accommodate practitioners from both the dis-
tributed computing and machine learning domains. In this
work, inspired by Sync-Switch [37], and acknowledging
these architectural differences, we propose Strategy-Switch,
a method that unifies All-Reduce and asynchronous Param-
eter Server, attempting to ensure training stability alongside
fast execution. Our main contributions include:

1) Presenting a benchmarking analysis outlining dispari-
ties between All-Reduce and asynchronous Parameter
Server.

2) Introducing Strategy-Switch as a hybrid training
method, evaluating its performance using established
image classification benchmarks.

3) Proposing an empirical rule governing the transition
from All-Reduce to Parameter Server.

The remainder of this paper is structured as follows:
Section I provides background information on distributed
deep learning architectures, followed by a comparative
benchmarking analysis in Section II. Section III details
Strategy-Switch, evaluated in Section IV, which also delves

FIGURE 2. Parameter Server architecture: Dashed lines depict
communication, solid lines represent data extraction.

into the proposed empirical transition rule. Section V
discusses related work, highlighting the distinctions between
Strategy-Switch and Sync-Switch, while Section VI concludes
our work.

I. THEORETICAL BACKGROUND
In this section, we establish the necessary background on
the two distributed training paradigms integrated into the
Strategy-Switch training methodology.

A. ALL-REDUCE
All-Reduce [27], [28], [29] embodies a decentralized training
methodology where all workers engage in gradient exchange.
This process is illustrated in Fig. 1. At the onset of a
training step, each worker extracts a mini-batch from their
local data partition, where they compute gradient vectors.
Synchronous all-reduce techniques facilitate the exchange
and aggregation of these gradients among workers and
subsequently update each worker’s local model for the next
iteration. This synchronous nature ensures uniformity across
local models when the next iteration is initiated. A widely
adoptedAll-Reduce approachwithin various learning systems
like TensorFlow [26] is the Ring All-Reduce [38] method.

B. PARAMETER SERVER
Parameter Server [30], [31], [32], [33] constitutes a central-
ized approach for distributed model training. In this setup,
servers maintain a global model, whereas workers compute
gradients on local model copies, using data from a data
partition assigned to them, as depicted in Fig. 2. Parameter
Server training can operate either in bulk synchronous (BSP)
or asynchronous parallel (ASP) mode. During a training step,
workers retrieve the latest model parameters from servers,
compute gradients using their local data, and push these
gradients back to update the global model on the servers.
In ASP, servers update the global model upon receiving new
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FIGURE 3. #C1 cluster CPU utilization for training benchmarks under All-Reduce and Parameter Server (a) #B1 -All-Reduce (b) #B1 -Parameter Server
(c) #B2 -All-Reduce (d) #B2 -Parameter Server.

TABLE 1. Benchmark overview.

gradients, whereas in BSP, they wait for gradients from all
workers. Throughout this paper, any reference to Parameter
Server without specifying the training mode refers to ASP.
Although ASP is faster since it lacks synchronization-related
performance overheads, it may suffer from stale gradients,
potentially compromising model accuracy.

C. HYPERPARAMETERS IN DISTRIBUTED SETTINGS
In these training paradigms, hyperparameters such as
mini-batch size and learning rate are adjusted to emulate
equivalent single-node setups [39]. To mirror single-node
training, the global batch size should match the single-node
counterpart, resulting in a scaled per-worker size based on
the worker count. In asynchronous Parameter Server, the
learning rate is also adjusted since each worker contributes
independently to the global model located on the servers.

II. BENCHMARKING ALL-REDUCE AND ASYNCHRONOUS
PARAMETER SERVER
This section presents an experimental evaluation of training
using the All-Reduce and Parameter Server paradigms to
delve deeper into their characteristics.

A. EXPERIMENTAL SETUP
The evaluation involved two benchmarks utilizing CIFAR
datasets [40] and ResNet-based neural networks [41] as
outlined in Table 1.
CIFAR-10 [40] is a set of labeled images. The CIFAR-

10 dataset consists of 60000 32 × 32 color images divided
into 10 classes, with 6000 images per class. The dataset is
divided into 50000 training data and 10000 test data. The
dataset is divided into five training batches and one control

FIGURE 4. Examples of CIFAR-10 images for each category.

batch, each of which consists of 10000 images. The control
batch contains exactly 1000 randomly selected images from
each class. Training batches contain the remaining images
in random order, but some training batches may contain
more images from the same class. In total the training
batches contain exactly 5000 images of each class. The
classes into which the data is divided are: plane, car, bird,
cat, deer, dog, frog, horse, ship, and truck. In Fig. 4 we
see examples of images from each class.1 The CIFAR-100
dataset is similar to CIFAR-10, but it contains 100 classes
with 600 images each. For each class, there are 500 training
images and 100 testing images. The 100 classes in CIFAR-
100 are organized into 20 superclasses. Each image has both
a ‘‘fine’’ label, indicating its specific class, and a ‘‘coarse’’
label, representing its superclass.

We adopt the hyperparameters referenced in Table 1
adjusted for distributed setups, as explained in Section I-C.
We utilized a private Openstack cloud cluster that pro-
vided us with virtual machines to setup our evaluation
infrastructure. Our infrastructure consists of a homogeneous

1downloaded from https://www.cs.toronto.edu/ kriz/cifar.html
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TABLE 2. VM specifications in clusters.

TABLE 3. Clusters used for experiments.

cluster (i.e., the cluster nodes hardware configuration is
the same) and a heterogeneous cluster (i.e., the cluster
nodes hardware configuration varies between the nodes).
Table 2 details the specifications of the Openstack cluster
virtual machine flavors utilized in the clusters. In Table 3
we provide an overview of the clusters utilized in our
experiments. We employed TensorFlow v2.6.2 for both All-
Reduce and asynchronous Parameter Server training in each
cluster.

B. HOMOGENEOUS #C1 CLUSTER BENCHMARKING
Fig. 3 illustrates the CPU utilization of All-Reduce and
Parameter Server training in the homogeneous #C1 cluster.
For both benchmarks, #B1 and #B2, All-Reduce and Parame-
ter Server display similar CPUutilization in this environment.
All-Reduce hovers around 65%, while Parameter Server
peaks at approximately 75%. The All-Reduce strategy
exhibits lower performance due to synchronization over-
heads, whereas Parameter Server demonstrates improved
cluster utilization as workers update themodel independently.

The network traffic in #C1 (Fig. 5) confirms similar
levels of incoming and outgoing traffic for All-Reduce across
both benchmarks, approximately 50 MB/sec. In contrast,
Parameter Server manifests higher network usage with
approximately 65 MB/sec for #B1 and 70 MB/sec for #B2.
This disparity results from the increased complexity of the
ResNet-32 model used in #B2, leading to a greater exchange
of gradients and model parameters.

C. HETEROGENEOUS #C2 CLUSTER BENCHMARKING
Fig. 6 displays the CPU utilization of All-Reduce and
Parameter Server training in the heterogeneous #C2 cluster.
Compared to the homogeneous cluster, All-Reduce and
Parameter Server showcase significantly divergent CPU
utilization. All-Reduce demonstrates lower CPU usage at
∼50% for both benchmarks, while Parameter Server exhibits
much higher usage (∼80%). The synchronous nature of
All-Reduce results in varied worker speeds, impacting perfor-
mance significantly in the heterogeneous environment. This
impact is due to the different computing capabilities of the
participating nodes and the requirement for synchronization.
The synchronization requirement stalls faster nodes that
need to wait for the slower nodes computation to finish.

Conversely, Parameter Server, operating asynchronously,
presents consistent utilization irrespective of worker differ-
ences, making it more adaptable to cluster heterogeneity.
This utilization consistency is the result of the asynchronous
computation: faster nodes do not need to wait for slower
nodes to finish their computations before gradient updates.
Nevertheless, this speed comes at the expense of slower
convergence, since ‘‘stale’’ computations of slower nodes
diverge the gradient computation away from its correct value
by adding noise at every computation step.

In terms of network traffic (Fig. 7), All-Reduce exhibits
similar levels compared to the homogeneous cluster, while
Parameter Server doubles the network traffic on #C2
compared to #C1. The higher traffic validates the effect
of stale value updates of slower nodes, as more message
exchanges (therefore more network traffic) between nodes
are needed in order to come to the same conclusion with the
homogeneous setup.

III. STRATEGY-SWITCH
In this section, we present our approach on distributed

training, i.e. the Strategy-Switch. We provide an extensive
discussion on the design of Strategy-Switch and conclude
with an empirical rule on the switching point.

A. APPROACH
In order to combine both the benefits of the two distributed
training setups discussed in Section I, we propose Strategy-
Switch. Strategy-Switch is a hybrid distributed setup, which
performs the model training in an All-Reduce approach up
to a specific epoch and then proceeds with training under
an asynchronous Parameter Server setup. Strategy-Switch-
α% is illustrated in Algorithm 1, where α% represents the
percentage of epochs performing All-Reduce training.

After the completion of the last All-Reduce epoch,
Strategy-Switch dumps (saves) the global model on a
Distributed File System (DFS), so that the parameter servers
(PS) can load it as the initialization point for the subsequent
asynchronous training stage. In practice, this model exchange
procedure requires minimal overhead, as the corresponding
checkpoint is copied to the DFS and then broadcast by the
servers.

B. THEORETICAL EXPLANATION
1) CONVERGENCE IN STRATEGY-SWITCH
In Sync-Switch [37], the authors provide a detailed theoretical
explanation on why changing training in the Parameter
Server architecture from BSP mode to ASP could benefit the
training process (Section IV-A). In our proposed Strategy-
Switch, the BSP Parameter Server phase is replaced with
an All-Reduce phase. Therefore, in Strategy-Switch, we can
consider All-Reduce training as a stable approach to lead the
model parameters closer to the optimization point, simillar
to the approach of the Sync-Switch [37]. When gradients
are small, smaller movements to the model parameters are
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FIGURE 5. #C1 cluster network utilization for training the benchmarks under All-Reduce and Parameter Server (a) #B1 -All-Reduce (b) #B1 -Parameter
Server (c) #B2 -All-Reduce (d) #B2 -Parameter Server.

FIGURE 6. #C2 cluster CPU utilization for training the benchmarks under All-Reduce and Parameter Server (a) #B1 -All-Reduce (b) #B1 -Parameter Server
(c) #B2 -All-Reduce (d) #B2 -Parameter Server.

FIGURE 7. #C2 cluster network utilization for training the benchmarks under All-Reduce and Parameter Server (a) #B1 -All-Reduce (b) #B1 -Parameter
Server (c) #B2 -All-Reduce (d) #B2 -Parameter Server.

caused. Hence, we can consider that the model is not crucially
altered and the small change of the model parameters render

it less vulnerable to stale gradients that may occur in
asynchronous learning setups.
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Algorithm 1 Strategy-Switch-α%
Input: Trainable model m, Training and validation data d ,

Global hyperparameters hp, Number of training epochs
e, Percentage of epochs under All-Reduce α

Output: Trained model m
1: Deploy a set w_allred of All-Reduce workers
2: for i = 1 to α ∗ e do
3: train(w_allred, m, d, hp, i)
4: end for
5: Dump m on DFS
6: Initiate a set ps of parameter servers
7: ps.load(m)
8: Deploy a set w_ps of Parameter Server workers
9: for i = α ∗ e+ 1 to e do

10: train(w_ps, ps, m, d, hp, i)
11: end for
12: return m

2) WHY ALL-REDUCE OVER BSP PARAMETER SERVER
As shown in Section II, asynchronous Parameter Server
consumes more network compared to All-Reduce. How-
ever, the higher CPU utilization attributed to the lack of
synchronization leads to faster training. When using BSP
Parameter Server, the synchronization will impact cluster
utilization and the training will also be prone to possible
network bottlenecks. Such bottlenecks may be attributed to
either server hotspots [35] and network waiting time for
synchronization [42]. Therefore, for synchronous training,
it is more efficient to exploit All-Reduce instead of BSP
Parameter Server, since network hotspots will be avoided,
due to All-Reduce being decentralized. Various studies [43],
[44], [45] discussing the network efficiency of All-Reduce
compared to Parameter Server support our claim.

C. EMPIRICAL RULE FOR THE SWITCHING POINT
The design of Strategy-Switch raises one important ques-

tion: When is it the right time to change from All-Reduce
to Parameter Server training? In this section, we discuss an
empirical rule which decides online throughout the training
process whether it is the right time to proceed with Parameter
Server training. Suppose vloss(i) is the validation loss in epoch
i and k is the last training epoch finished, then when the
boolean expression in 1 becomes true, the training continuous
under an asynchronous Parameter Server setup.

s =

∑4
i=0 ∥vloss(k − i) − vloss(k − i− 1)∥ · 100%

5 · vloss(k − i− 1)
< 1%

(1)

The idea behind this empirical rule lies on changing to
asynchronous training when the training process has become
more stable. In order to measure how stable the training is
at a specific epoch, we utilize a 5-window running over the
percentage change of the validation loss in the last epochs
(value s in 1). When the mean percentage change becomes

Algorithm 2 Empirical Rule Strategy-Switch
Input: Trainable model m, Training and validation data d ,

Global hyperparameters hp, Number of training epochs
e, Percentage of epochs under All-Reduce α

Output: Trained model m
1: Deploy a set w_allred of All-Reduce workers
2: val_window = rolling_window(6)
3: s = +∞

4: i = 0
5: while s > 1% do
6: train(w_allred, m, d, hp, i)
7: roll(val_window, epoch_val_loss)

8: s =

∑4
j=0 ∥vloss(i−j)−vloss(i−j−1)∥·100%

5·vloss(i−j−1)
9: i = i + 1

10: end while
11: start_epoch_ps = i
12: Dump m on DFS
13: Initiate a set ps of parameter servers
14: ps.load(m)
15: Deploy a set w_ps of Parameter Server workers
16: for i = start_epoch_ps to e do
17: train(w_ps, ps, m, d, hp, i)
18: end for
19: return m

small and less than 1%, we consider this epoch a good
switching point. Both the window size and the percentage
threshold were found empirically. Larger window sizes were
found sensitive to previous epochs with larger values of
validation loss, leading the training to switch to asynchronous
mode at the very last few epochs. Smaller window sizes
might lead to earlier switching points, affected by smaller loss
change between less successive epochs. The choice of the 1%
threshold is further explained in Section IV-B.
Strategy-Switch enriched with the empirical rule (ER-SS)

is described in Algorithm 2.

IV. EXPERIMENTAL EVALUATION
In this section, we present a detailed experimental evaluation
on Strategy-Switch, compared to All-Reduce and Parameter
Server training on homogeneous and heterogeneous clusters.
While the experiments focus on ResNet-based architectures
for CIFAR datasets, the proposed approach is not restricted
to ResNets. Our primary reason for choosing these networks
is the wealth of published results and well-understood
convergence properties, making them particularly suitable for
demonstrating the effects of switching strategies.

A. EXPERIMENTAL SETUP
The clusters and benchmarks used are the same as the ones
used in the benchmarking analysis in Section I. For ease of
reading, #B1 and #B2 benchmarks refer to training CIFAR-
10 on ResNet-20 and CIFAR-100 on ResNet-32 respectively.
#C1 and #C2 refer to the homogeneous and heterogeneous
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FIGURE 8. Accuracy vs. time trade-offs in #C1 cluster for each benchmark when using All-Reduce, Parameter Server and Strategy-Switch with various
switching points. Percentage in Strategy-Switch labels indicates the percentage of epochs performed under All-Reduce in the beginning of the training.
(a) #B1 - Training Acc. (b) #B1 - Validation Acc. (c) #B2 - Training Acc. (d) #B2 - Validation Acc.

clusters used (see Table 3 in Section II for cluster structures).
As global hyperparameters, we use the ones discussed in the
official ResNet paper [41] and mentioned in Table 1. We have
executed every experiment 3 times and error bars outline the
statistical information (i.e., average and min/max values) for
every experiment. The collected metrics for each experiment
run were consistently close to each other, mainly due to the
fact that the selection of dataset sizes and cluster resources
resulted in sufficient execution times, minimizing statistical
errors that may occur when the execution times are negligible.
In sections IV-B and IV-C, we discuss tradeoffs in Strategy-
Switch-α% and the empirical rule based on the validations
loss of the All-Reduce training on the benchmarks in the
homogeneous cluster. In sections IV-D and IV-E we evaluate,
All-Reduce, Parameter Server and Empirical Rule Strategy-
Switch on both the benchmarks and on both clusters.

B. TRADE-OFFS WHEN USING STRATEGY-SWITCH-α% ON
THE HOMOGENEOUS #C1 CLUSTER
Fig. 8 presents the trade-offs regarding accuracy and
execution time between All-Reduce, Parameter Server and
Strategy-Switch-α% strategies in the homogeneous #C1
cluster.

As observed from Fig. 8 All-Reduce achieves the highest
train and validation accuracy for both benchmarks #B1 and
#B2 in the homogeneous #C1 cluster. This can be attributed
to the synchronous nature of All-Reduce. Therefore, the con-
vergence of the optimization algorithm used in the training
remains the same as the one of the single node. However,
All-Reduce appears to be the slowest approach compared
to the other experiments, due to the synchronization-related
overheads present throughout the training process.

Unlike All-Reduce, Parameter Server achieves the low-
est accuracy for both benchmarks #B1 and #B2 in the
homogeneous #C1 cluster. The lack of synchronization
in the Parameter Server harms the convergence of the
optimization algorithms, due to stale gradients mentioned in
Section I-B. In further detail, when training is completed
under the Parameter Server, model parameters might have
been updated in various steps with gradients computed on
outdated model parameters. On the other hand, asynchronous
training gives an advantage to Parameter Server, compared
to the synchronous approach in terms of the training speed.
Each worker trains the model completely independently at its
own highest pace leading to the fastest possible training in the
Parameter Server for both benchmarks #B1 and #B2.
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FIGURE 9. Value used in the empirical rule per training epoch on All-Reduce setups for both benchmarks. Vertical dashed line indicates the switching
point according to the empirical rule. (a) #B1 - Validation Loss (b) #B2 - Validation Loss.

Strategy-Switch-α% proposed in this paper, achieves a bal-
ance between All-Reduce and Parameter Server by exploiting
the advantages of both strategies. In Strategy-Switch, the
training of the model starts with the All-Reduce and ends
with the Parameter Server strategy. Therefore, the first α%
slower epochs following the All-Reduce paradigm lead the
model to a set of parameters closer to the optimization point,
which is less prone to stale gradients of the Parameter Server
training of the last epochs. Thus, similar levels of accuracy
to All-Reduce can be achieved faster. α is a hyperparameter
in Strategy-Switch, which we study by tuning α in the range
[10, 90] with step 10. Irrespective of the value of α, Fig. 8
indicates that, in Strategy-Switch, the accuracy metrics are
higher than the Parameter Server and the training time is
shorter compared to All-Reduce. Furthermore, the larger the
value of α, the slower the training process is, due to more
epochs performed under All-Reduce. In general, larger values
of α indicate models that approach the convergence point of
the All-Reduce training.

C. EXPLAINING THE S VALUE OF THE EMPIRICAL RULE
ON THE HOMOGENEOUS #C1 CLUSTER

As explained in Section IV-B, α is a hyperparameter
in Strategy-Switch. To identify a proper switching point,
we propose the empirical rule discussed in Section III-C,
leading to Empirical Rule - Strategy-Switch. In this section,
we discuss the evolution of the s value of the empirical rule
per training epoch. In Fig. 9 the s value is presented per train
epoch on the All-Reduce training for both benchmarks. The
vertical dashed line indicates the switching point according
to the empirical rule.

Fig. 9a outlines the evolution of the s value for the #B1
benchmark. The validation loss drops to lower values rapidly
and is stabilized early in the training process. Specifically,
in epoch 26, the s value appears to satisfy the threshold of 1%
in the empirical rule presented in Equation 1 of Section III-C.
For∼50 epochs, the value of s is at the same levels, presenting
some spikes later on some epochs. Larger s values indicate

larger validation loss change. Attributed to the tuning of
the learning rate (Table 1), which is decreased at epoch 81,
the validation loss presents a larger variation at this point.
However, the earlier steady state of the model renders epoch
26 a good switching point, since the spikes attributed to the
decrease of learning rate in the s value, are smoothed after a
few epochs.

Similar observations are made in Fig. 9b regarding bench-
mark #B2. However, the training appears to be stabilized
at epoch 109, since benchmark #B2 is more complex to
converge compared to benchmark #B1.

In the following sections IV-D and IV-E we evaluate
Empirical Rule - Strategy-Switch in contrast with All-
Reduce and Parameter Server for both benchmarks in the
homogeneous #C1 and the heterogeneous #C2 clusters
respectively.

D. STRATEGY-SWITCH IN THE HOMOGENEOUS #C1
CLUSTER USING THE EMPIRICAL RULE.
Fig. 10, Fig. 11 and Fig. 12 present the results of Strategy-
Switch in the homogeneous #C1 cluster when using the
empirical rule and compares them with All-Reduce and
Parameter Server training. It can be observed that in both
benchmarks #B1 and #B2 Strategy-Switch has the best
trade-off between accuracy and execution time.

When reaching convergence, training, and validation accu-
racy are shown in Fig. 11a and Fig. 11b. Training accuracy
presents almost identical values between All-Reduce and
Strategy-Switch, while smaller values are observed under
Parameter Server. The same patterns are also identified
regarding validation accuracy under convergence. Fig. 10a
and 10b present the execution time of all distributed training
approaches for benchmarks #B1 and #B2 in the homogeneous
#C1 cluster. Parameter Server strategy is the fastest one as
expected. Strategy-Switch is clearly faster than All-Reduce
strategy for both benchmarks #B1 and #B2. In further detail,
for the #B1 benchmark, the converged Strategy-Switchmodel
presents only a loss of 0.05% and 0.1% in the training and
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FIGURE 10. Training time under All-Reduce, Strategy-Switch and Parameter Server in the homogenous #C1 cluster (a) #B1 benchmark (b) #B2 benchmark.

FIGURE 11. Training and validation accuracy values at convergence, when training in the homogenous #C1 cluster for the benchmarks (a) #B1 benchmark
(b) #B2 benchmark.

validation accuracy respectively compared to the All-Reduce
model, while it is trained 1.14X faster. Regarding the #B2
benchmark, with a loss of 1% and 0.06% in the training and
validation accuracy, the resulting model in Strategy-Switch is
training with 1.1X speedup.
Fig. 12c and 12d outline the training and validation

accuracy at each epoch during training the benchmarks
#B1 and #B2. It can be observed that when training under
Strategy-Switch, training loss follows the same pattern as
the case of training under All-Reduce, while in Parameter
Server the loss presents a different evolution. The training
setups have the same behavior regarding validation accuracy,
as further outlined in Fig. 12. The evolution of the training and
validation loss across epochs for benchmarks #B1 and #B2
are illustrated in Fig. 12a and 12b. It is important to note that
validation loss under Strategy-Switch evolves into smaller
values across epochs compared to All-Reduce and Parameter
Server. Regarding training loss, under Strategy-Switch we
achieve similar trends to Parameter Server training, which
evolves better compared to All-Reduce.

E. STRATEGY-SWITCH IN THE HETEROGENEOUS #C2
CLUSTER USING THE EMPIRICAL RULE
Fig. 13, Fig. 14 and Fig. 15 present the results of Strategy-
Switch when using the empirical rule in the heterogeneous
#C2 cluster in comparison with results from models trained
under All-Reduce and Parameter Server. As in Section IV-D,
Strategy-Switch presents the best trade-offs between the two
baseline distributed approaches.

Fig. 15 indicates similar trends in the evolution of loss
and accuracy metrics to the ones derived from training in the
homogeneous cluster. Specifically, Strategy-Switch models
follow similar trends to the ones of the All-Reduce models
regarding accuracy. In terms of training and validation loss,
Strategy-Switch finally reaches lower levels compared to the
other training setups.

The greatest difference between the results of the het-
erogeneous #C2 cluster and the homogeneous #C1 cluster
is related to the execution time. Let us discuss in further
detail the trade-offs between accuracy and training time in the
heterogeneous #C2 cluster. For the benchmark #B1, Fig. 13a
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FIGURE 12. Loss and accuracy, when training in the homogenous #C1 cluster for the benchmarks. Black lines indicate training metrics and gray lines
indicate validation metrics. (a) Loss - #B1 benchmark (b) Loss - #B2 benchmark (c) Accuracy - #B1 benchmark (d) Accuracy - #B2 benchmark.

FIGURE 13. Training time under All-Reduce, Strategy-Switch and Parameter Server in the heterogeneous #C2 cluster (a) #B1 benchmark (b) #B2
benchmark.

and Fig. 14a present the execution time and resulting accuracy
values when training models under the three distributed
approaches. Strategy-Switch completes the training 2.07X
faster compared to All-Reduce. Strategy-Switch also appears
to present the greatest value in both training and validation
accuracy (∼0.05% greater than All-Reduce). In Strategy-
Switch the model parameters are initialized by All-Reduce for
the rest of the training to be performed under the Parameter
Server. Due to the heterogeneity of the cluster and the lack of
synchronization in the Parameter Server, the faster workers
will dominate the training until they finish, leading to fewer
stale parameters in the slow machines. On the contrary, the
slow machines will continue the train at their own pace when
the faster machines have finished, without the stale gradients
effect. This observation can explain the slight increase in
the accuracy values in Strategy-Switch. Similar trends are

observed in the #B2 benchmark. In this case, execution
time and accuracy values are provided in Fig. 13b and 14b
respectively. The model derived from Strategy-Switch is
created 1.4X faster than the All-Reduce one, with a validation
accuracy slightly enhanced by 0.19%. In both benchmarks
Parameter Server is the faster (2.48X for #B1 and 2.28 for
#B2 speedup compared to All-Reduce), but lacks in models
quality (validation accuracy harmed by 0.9% for #B1 and
2.88% for #B2 compared to All-Reduce).

V. RELATED WORK
As discussed in Section III, Strategy-Switch is inspired from
Sync-Switch [37], by changing the BSP Parameter Server
to All-Reduce training, in the first epochs of the hybrid
training. However, we do not compare our approach to
Sync-Switch. The reason behind this choice is that the two
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FIGURE 14. Training and validation accuracy values at convergence, when training in the heterogeneous #C2 cluster for the benchmarks (a) #B1
benchmark (b) #B2 benchmark.

FIGURE 15. Loss and accuracy, when training in the heterogeneous #C2 cluster for the benchmarks. Black lines indicate training metrics and gray lines
indicate validation metrics. (a) Loss - #B1 benchmark (b) Loss - #B2 benchmark (c) Accuracy - #B1 benchmark (d) Accuracy - #B2 benchmark.

approaches identify the switching point in different setups.
in Sync-Switch, the authors propose an offline switching
point policy based on a binary search on the converged
accuracy of various runs. In Strategy-Switch, we propose an
empirical rule applied to the synchronous All-Reduce online.
Therefore we could not compare to their offline approach
that needs multiple runs. In Sync-Switch they also propose
an online protocol for transient stragglers that might appear
and disappear throughout the training. Since we benchmark
on clearly homogeneous and heterogeneous setups without
transient stragglers, their is no direct comparison between
our methods. In homogeneous setups, their online protocol
could result in ASP training, while in our heterogeneous
environment with constant straggler VMs Sync-Switchwould
result in BSP Parameter Server.

A comprehensive survey on distributed machine learning
is presented in [46] (Figure 3 discusses about different ML
topologies). An updated survey on decentralized federated
learning is presented in [47]. Although we do not place
Strategy-Switch in the category of federated learning, we bor-
row methodologies from it during model exchanges, etc.
In [48] the authors present Epidemic Learning, a distributed
approach where participating nodes randomly exchange
model updates. The authors present theoretical guarantees
and experimental evaluation that indicate they can converge
quicker and with a slightly better accuracy than baselines.
In PANM [49] the authors also exploit decentralization in
a federated setting to achieve efficient training by detecting
node clusters, showcasing that a distributed approach where
weights are exchanged between peers can be beneficial. The
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authors of [50] evaluate numerous autonomous connection
methodologies in peer to peer settings and showcase that the
the connection mechanism plays a crucial role in the model
accuracy and convergence time.

A. CONSISTENCY CONTROL VS. TRAINING TIME
Recently, there have been multiple works trying to enhance
both the All-Reduce and the Parameter Server training. For
example, Prague [51] was proposed as an asynchronous All-
Reduce alternative exploiting primitives of AD-PSGD [52]
for faster model training in heterogeneous environments.
In Parameter Server, there have been proposed multiple
research papers discussing trade-offs between consistency
and performance, with SSP [42] as the most prominent,
and DSSP [53] as an evolution with dynamic approved
staleness values. In fedPAGE [54] the authors adaptively
prune workers according to their capabilities (i.e., networking
bandwidth, CPU processing power, etc.) until all workers
achieve a balanced ‘‘speed’’. FEDL [55] balances local
computation rounds (i.e., local weight updates) with global
communication rounds (i.e., model exchanges) to optimize
convergence rate and accuracy. PFL [56] also adapts local
and global computation timing and exchange between
peers to optimize the entire model convergence efficiency,
by employing a set of algorithmic approaches. PruneFL [57]
adaptively prunes the model size according to the capabilities
of each worker while. Such works sacrifice less model quality
in respect with execution time, but Strategy-Switch appears to
present similar metrics to the synchronous approach.

B. OTHER OPTIMIZATIONS
For heterogeneous environments, there have been pro-
posed various hyperparameter adjustments, such as learning
rate [53] and mini-batch size adjustments [58] per worker.
Regarding network utilization, there have been also mul-
tiple optimizations proposed including gradient sparsifica-
tion [32], [33], [59], [60] and quantization [61], [62], [63],
[64]. For parameter server training, the network could also be
optimized via parameter management in servers [65], [66].
Such optimizations are orthogonal to Strategy-Switch and
could be applied for further optimizations.

VI. CONCLUSION AND FUTURE WORK
In this work, we propose Strategy-Switch as a hybrid
distributed training approach exploiting All-Reduce and
asynchronous Parameter Server for more efficient neural
network training. We also enrich Strategy-Switch with an
empirical rule, that can decide the switching point from All-
Reduce to asynchronous Parameter Server for best model
metrics similar to the All-Reduce’s ones. Our experimental
evaluation indicated the same quality models as the ones
derived from synchronous approaches with up to 1.14X
speedup. On heterogeneous environments, Strategy-Switch
managed to create models with slightly enhanced accuracy
metrics on training and validation sets by up to 2.07X faster.

Although we have focused on CIFAR-10/100 benchmarks
and ResNet-based architectures, the proposed scheme can be
extended to other tasks and architectures that exhibit typical
deep-learning convergence patterns. Formore comprehensive
coverage, future work includes an exploration of alternative
model families (e.g., Vision Transformers, NLP-focused
architectures), scenarios where transient stragglers appear
sporadically, and additional large-scale experiments involv-
ing random capacity distributions. We also aim to refine and
mathematically analyze the empirical rule’s hyperparameters
(rolling window size and threshold), investigating whether
an adaptive strategy or theoretically guided threshold could
further optimize switching performance. Finally, we plan
to incorporate GPU-based experiments and advanced syn-
chronization schemes, highlighting how Strategy-Switch
could extend into settings with more powerful hardware
accelerators.
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