
Elastic Translations: Fast virtual memory with
multiple translation sizes

Stratos Psomadakis∗
psomas@cslab.ece.ntua.gr

Chloe Alverti†
xalverti@illinois.edu

Vasileios Karakostas‡
vkarakos@di.uoa.gr

Christos Katsakioris∗
ckatsak@cslab.ece.ntua.gr

Dimitrios Siakavaras∗
jimsiak@cslab.ece.ntua.gr

Konstantinos Nikas∗
knikas@cslab.ece.ntua.gr

Georgios Goumas∗
goumas@cslab.ece.ntua.gr

Nectarios Koziris∗
nkoziris@cslab.ece.ntua.gr

∗National Technical University of Athens
Athens, Greece

†University of Urbana-Champaign
Champaign, Illinois, USA

‡University of Athens
Athens, Greece

Abstract—Large pages have been the de facto mitigation
technique to address the translation overheads of virtual memory,
with prior work mostly focusing on the large page sizes supported
by the x86 architecture, i.e., 2MiB and 1GiB. ARMv8-A and
RISC-V support additional intermediate translation sizes, i.e.,
64KiB and 32MiB, via OS-assisted TLB coalescing, but their
performance potential has largely fallen under the radar due to
the limited system software support. In this paper, we propose
Elastic Translations (ET), a holistic memory management solu-
tion, to fully explore and exploit the aforementioned translation
sizes for both native and virtualized execution. ET implements
mechanisms that make the OS memory manager coalescing-
aware, enabling the transparent and efficient use of intermediate-
sized translations. ET also employs policies to guide translation
size selection at runtime using lightweight HW-assisted TLB
miss sampling. We design and implement ET for ARMv8-A in
Linux and KVM. Our real-system evaluation of ET shows that
ET improves the performance of memory intensive workloads
by up to 39% in native execution and by 30% on average in
virtualized execution.

Index Terms—Operating Systems, Memory Management, Vir-
tual Memory, Address Translation, TLB

I. INTRODUCTION

The ever-growing memory footprints of modern workloads
have been steadily increasing the pressure on the virtual
memory subsystem [1]. Industry has responded by enabling
the memory management unit (MMU) and the OS to support
larger page sizes. Large pages store the virtual-to-physical
translations higher up the page table hierarchy, increasing the
Translation Lookaside Buffer (TLB) reach and shortening the
page walks triggered by these misses [2]. On the downside,
large pages often increase internal memory fragmentation and
fault latency [3–8] and quickly become scarce as physical
memory gets fragmented [3, 4, 9–11].

The x86 architecture supports two large page sizes, 2MiB
and 1GiB. Industry [12–19] and academia [3, 4, 6–9, 20]
have proposed a multitude of techniques, with different trade-
offs, to enable and enhance OS support for these large page
sizes. Table II provides an overview of these techniques and

This work was funded by the European Union under the Horizon Europe
grant 101092850 (project AERO).

Section II discusses them in detail. Earlier designs adopted
non-transparent interfaces [15, 17], which required large
pages to be explicitly requested by userspace. State-of-practice
and state-of-the-art eventually converged to transparent in-
terfaces [12, 18] for large pages, tasking the OS memory
manager with selecting which page size to use and when.
The majority of these designs only support 2MiB pages
transparently. 1GiB large pages exacerbate the aforementioned
downsides of large pages, making their transparent support
challenging [8]. However, the effectiveness of 2MiB pages
diminishes as the memory footprint of applications keeps
growing [8]. Additionally, when memory is fragmented, even
2MiB become scarce thus hard to allocate [9, 11].

ARMv8-A and RISC-V provide architectural support for ad-
ditional translation sizes1, via OS-assisted TLB coalescing, by
adding a contiguous bit [21] in their page table entries. The OS
can set the contiguous bit on 16 contiguously mapped pages in
the first two levels of the page tables, effectively creating two
intermediate translation sizes, 64KiB and 32MiB respectively.
The contiguous bit acts as a marker for the page walker to
cache these table entries as a single TLB translation (Figure 1).
In this work we focus on ARMv8-A, but we also consider
the RISC-V support for OS-assisted TLB coalescing [22]. As
these architectures are making their way to the datacenter [23–
25], where the ever-growing workload footprints stress the
address translation (AT) hardware, we argue that a larger
arsenal of transparently-supported translation sizes, including
intermediate-sized translations, would allow system software
to better maneuver among the various trade-offs and address
the limitations exhibited by the traditional 2MiB / 1GiB large
page model.

To that end, system software needs to: i) provide mecha-
nisms to transparently support the larger number of translation
sizes for both native and virtualized execution, and ii) devise
policies to judiciously select between those sizes. State-of-
practice and state-of-the-art have only partially addressed

1We use translation size to refer to the granularity at which the TLB caches
translations.

1

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0002-0614-4438
https://orcid.org/0000-0002-7965-0510
https://orcid.org/0000-0001-5496-2430
https://orcid.org/0000-0002-9634-2835
https://orcid.org/0000-0002-9857-623X
https://orcid.org/0000-0003-4424-9951
https://orcid.org/0000-0001-7811-4831
https://orcid.org/0000-0002-4890-8427

these challenges. Linux supports contiguous-bit intermediate
translations via the non-transparent HugeTLB interface [15]
and only for native execution. Preliminary transparent support
for 64KiB intermediate-sized translations is under develop-
ment [13, 14] (Section II). Policy-wise it follows a simple
fallback mechanism, opting for the largest possible translation
size first and falling back to smaller sizes upon failure. Our
goal is to provide a holistic memory management solution that
seamlessly and efficiently supports multiple translation sizes,
extending beyond 2MiB, and remains resilient to external
memory fragmentation. We design Elastic Translations (ET),
synergistic mechanisms and policies (Table I) to accomplish
this goal. We make the following contributions:

1) We extend Linux and KVM [26] to support HugeTLB
intermediate-sized translations for virtualized execution
and comprehensively evaluate them for both native and
virtualized execution (Section III). Our results showcase the
performance potential of 64KiB and 32MiB translations,
motivating the development of Elastic Translations.

2) We enable Linux to transparently and opportunistically
manage the contiguous bit for both 64KiB and 32MiB
translations for both native and virtualized execution (Sec-
tion IV-A).

3) We design the CoalaPaging (Section IV-B) and
CoalaKhugepaged (Section IV-C) coalescing-aware
extensions to the Linux memory manager. CoalaPaging,
based on contiguity-aware paging [27], opportunistically
allocates suitable 4KiB and 2MiB pages across faults
in order to lazily generate intermediate-sized contiguity
that matches the coalescing size supported by the
HW. CoalaKhugepaged extends Linux khugepaged to
asynchronously create 64KiB and 32MiB translations via
migrations. The two mechanisms work synergistically, i.e.,
when CoalaPaging fails to allocate all the contiguous pages
required for a 64KiB or 32MiB translation at fault time,
e.g., due to external fragmentation, CoalaKhugepaged
will exploit the partial contiguity to migrate fewer pages.
CoalaPaging and CoalaKhugepaged along with the
transparent contiguous bit management comprise the
Elastic Translations (ET) in-kernel mechanisms.

4) We use HW-assisted sampling to periodically record the
TLB misses of workloads at runtime, and design a profiler,
Leshy2, which implements the ET policies for transla-
tion size selection. Leshy tracks the virtual address and
page walk latency for each sampled miss and generates
a translation-overhead heat-map of the address space. It
then maps regions to translation sizes with the goal of
minimizing translation costs based on the aforementioned
heat-map (Section IV-D). Finally, Leshy drives the ET in-
kernel mechanisms, by loading the generated translation-
size profiles in the kernel. We use the ARMv8-A Statistical
Profiling Extension (SPE) [21] for HW-assisted sampling
and show that HW-assisted TLB miss sampling acts as a

2Leshy is a mythological guardian spirit that can change in size.

highly accurate low-overhead estimator for address trans-
lation performance.

We design and implement ET in Linux v5.18. Our evalu-
ation on an ARMv8-A server shows that transparent 64KiB
translations perform closely to 2MiB pages for memory-
intensive workloads with small footprints (Section VII) for
both native and virtualized execution. For larger workloads,
transparent 32MiB translations improve performance by 10%
on average and up to 39% over THP for native execution and
by 30% and up to 150% for virtualized execution. Finally,
Leshy’s microarchitectural-aware policies guide ET to map the
footprint of workloads by utilizing a mix of all of the available
translation sizes, in order to minimize translation overhead.
This improves overall performance under fragmentation by
12% on average and up to 20% over THP and state-of-the-art
while consistently reducing the number of 2MiB pages used.

Component Purpose Main Contribution

Transparent
Contig-Bit

Transparent, opportunistic creation
of 64KiB and 32MiB translations

Native support for 32MiB translations
Virtualization support for all sizes

CoalaPaging
Transparent opportunistic creation of

contiguous 64KiB and 32MiB
mappings across faults

Practical and scalable allocation policy
for 32MiB mappings, with minimal

impact on fault latency and memory bloat

CoalaKhuge Asynchronous creation of 64KiB
and 32MiB mappings via migrations

Enables the creation of
64KiB and 32MiB translations

under memory pressure (fragmentation)

Leshy Profiler Runtime translation size selection
guidance via MMU overhead profiling

Optimal translation size selection
from an extended range of sizes

via lightweight HW-assisted
TLB miss sampling

TABLE I: Elastic Translations Components

II. BACKGROUND

As the working sets of workloads outgrew the TLB reach
[1, 10, 27–30, 30–36], TLB miss rates increased significantly.
Additionally, the page walks are expected to get costlier as
i) paging transitions from 4 to 5-level tables [37, 38] and
ii) virtualization has become ubiquitous. TLB misses in HW-
assisted virtualization are notoriously costlier [27, 31, 32, 39],
as they involve nested traversal of the guest and hypervisor
page tables [40]. Industry’s response to the problem at hand
has been to steadily increase TLB capacity and add support for
larger page sizes to expand the TLB reach and minimize page
walk overheads. In particular, the x86 architecture supports
two different large page sizes, 2MiB and 1GiB, which are
implemented by storing virtual-to-physical translations higher
up the radix tree.

A. OS support for Large Pages

OS large page interfaces can be broadly classified into two
categories, non-transparent and transparent. Non-transparent
interfaces support all available large page sizes, i.e., for
x86, 2MiB and 1GiB, but require applications to explicitly
request which specific size to use for which specific region
of the address space. Additionally, the large pages need to
be allocated in advance and are generally unavailable to
the OS memory manager, e.g., for reclaim under memory
pressure. This approach is adopted by Linux HugeTLB [15].
By contrast, transparent large page interfaces obviate the need

2

Transparent
Faults Translation Promotions

Supported Policy Supported Policy Virtualization Supported Policy
Sizes Sizes Support Sizes

HugeTLB [15] ✗
4KiB, 64KiB
2MiB, 32MiB

1GiB

Pre-allocation
Single user-defined

size per VMA

4KiB, 64KiB
2MiB, 32MiB

1GiB

Defined by
fault size

4KiB
2MiB
1GiB

✗ ✗

mTHP [12, 13] ✓
4KiB, 64KiB

2MiB

Eager allocation of the
largest possible size
Fallback on failure

4KiB, 64KiB
2MiB

Defined by fault
or promotion size

4KiB
2MiB
1GiB

2MiB Migrate to 2MiB
Region selection: Linear scan

FreeBSD [18] ✓ 4KiB

2MiB reservation
at first 4KiB fault
Use reservation
to serve the rest

4KiB
2MiB

Defined by fault
or promotion size

4KiB
2MiB 2MiB

In-place promotion to 2MiB
when every 4KiB page

is faulted-in

HawkEye [4] ✓
4KiB
2MiB

Same as mTHP
Asynchronous

pre-zeroing

4KiB
2MiB

Defined by fault
or promotion size

4KiB
2MiB 2MiB

Selectively migrate to 2MiB
Region selection: Access frequency

based on page table scanning

Trident [8] ✓
4KiB
2MiB
1GiB

Same as HawkEye
4KiB
2MiB
1GiB

Defined by fault
or promotion size

4KiB
2MiB
1GiB

2MiB
1GiB

Migrate to largest size possible
Fallback on failure

Selection same as mTHP

Elastic
Translations ✓

4KiB
2MiB

4KiB / 2MiB eager allocation
based on VMA size

Opportunistic
coalescing-aware

allocations across faults

4KiB, 64KiB
2MiB, 32MiB

4KiB or 2MiB based on
fault or promotion size

Opportunistic
promotion

to 64KiB or 32MiB

4KiB, 64KiB
2MiB, 32MiB

64KiB
2MiB, 32MiB

Selectively migrate to
64KiB, 2MiB, 32MiB

Region Selection: Size hints
based on HW TLB

miss sampling

TABLE II: State-of-practice and state-of-the-art large page interfaces.

for explicit opt-in by userspace applications and are tightly
coupled with the core OS memory management subsystem.
However, they typically only support 2MiB pages in modern
OSes [12, 18, 19] (Table II) and task the OS with the
responsibility of size selection.

Transparent large pages are formed either synchronously
or asynchronously. The synchronous path is implemented via
demand paging, when a page is first accessed (written to).
When a page is accessed for the first time, a page fault
is triggered, which the OS handles by allocating physical
memory for the faulting page. With transparent large pages,
the OS must decide i) whether a large page will be allocated
to serve the fault, and ii) which large page size to use, when
multiple large page sizes are supported transparently (fault
policy). Page migrations can also be leveraged to create large
pages asynchronously, off the fault path. The OS periodically
scans the memory of running processes and finds discon-
tinuous groups of pages suitable for promotion to a large
page. It then allocates a large page in physical memory and
migrates to it the aforementioned discontinuous pages. In that
case, the OS must decide i) which virtual regions are worth
promoting to larger pages and ii) what will be the target
size, if multiple sizes are supported (promotion policy). For
both cases, the allocated memory is mapped to userspace by
updating the process page tables. At that point, the OS must
select, from the list of available MMU-supported translation
sizes, an appropriate size with which to map the allocated
memory (translation policy). Table II shows the different
policies adopted by state-of-practice and state-of-the-art.

Linux THP [12] opts for a greedy approach, that always
allocates entire 2MiB pages at fault time. This has the ad-
vantage of backing the workload’s address space with large
pages as early as possible but performs poorly under memory
pressure [3–7]. The unsolicited use of 2MiB pages leads to
their sub-optimal distribution among processes and address
space regions, when they run low in the system due to

external fragmentation. Linux THP also includes a kernel
thread, khugepaged, that asynchronously scans and promotes
(to 2MiB) suitably-aligned 2MiB regions which are fully or
partially backed by 4KiB pages, by migrating the constituent
base pages to a contiguous 2MiB block of memory. State-
of-the-art improves upon THP by using i) base page utiliza-
tion [3, 7, 20], ii) access frequency sampling [3, 4], iii) coarse-
grained MMU overhead profiling [4] and iv) user-provided
profiles [5] to select which pages to promote to 2MiB, either
at fault time [5] or asynchronously [3, 4, 7, 20].

Linux recently added support for multi-sized THP
(mTHP) [13]. mTHP introduces a fault-time policy which
enables the allocation and mapping of 64KiB blocks of
memory. At fault time, Linux will attempt to allocate a 2MiB
page. If the 2MiB allocation fails, it will then fall back to
64KiB instead of 4KiB. At the moment, mTHP works solely
at fault-time, as there’s no support for asynchronous mTHP
promotions, and only for native execution. Additionally, it does
not support 32MiB translations.

FreeBSD transparently supports 2MiB pages using a reser-
vation based fault-time policy [18, 19]. It reserves a 2MiB
block of memory at first fault, but faults the pages in at a 4KiB
granularity, promoting them to a large page in place during the
last such fault. This strategy keeps fault latency bounded but
delays the formation and mapping of large pages [6]. FreeBSD
does not employ any kind of asynchronous promotions via
migrations.

Neither OS supports 1GiB pages transparently, as this
would require the OS to track 1GiB-aligned free blocks
and reserve them at fault time, potentially penalizing fault
performance and increasing internal fragmentation. Moreover,
1GiB pages quickly become scarce [9–11], due to external
memory fragmentation. Consequently, prior art for transparent
1GiB support [8] mainly relies on asynchronous promotions
and aggressive compaction to generate the required contiguity.
Neither OS or state-of-the-art design supports 32MiB pages.

3

B. OS-assisted TLB coalescing

TLB coalescing [41–43] is a technique that caches the
translation of N contiguously mapped pages using a single
TLB entry. While TLB coalescing can be implemented entirely
in HW, the coalescing factor N is typically limited [44, 45]
leading to diminishing results [46].

The ARMv8-A architecture supports OS-assisted TLB co-
alescing instead. Figure 1 shows how ARMv8-A enables a
coalescing factor of N = 16 with OS assistance. Its page table
entries include a contiguous bit (bit 52) which, if set by the OS
in N = 16 consecutive page table entries, it indicates to the
translation hardware that these N pages are contiguous and
properly aligned according to the coalescing factor. In Fig. 1
the [VA..VA+15] virtual 4KiB pages are contiguously mapped
to [PA..PA+15] physical 4KiB pages (1). VA and PA are also
aligned to 64KiB (16 * 4KiB). Since every page in the 64KiB
range meets the above criteria, the OS can set the contiguous
bit in the 16 consecutive (yellow) PTE entries (2) mapping
these 16 virtual pages to their physical frame numbers (PFNs).
This allows the MMU to coalesce them into a single TLB entry
and cache them as such in the TLB (3). Coalescing increases
the TLB reach, effectively forming an intermediate translation
size. Similarly, [VB..VB+15] contiguously mapped 2MiB pages
(green) are coalesced to a 32MiB intermediate translation via
setting the contiguous bit in their 16 consecutive (green) PMD
entries. Finally, the contiguous bit is also supported in the
PMD and PTE levels of nested page tables, which allows the
MMU to coalesce contiguously mapped pages for virtualized
workloads as well. RISC-V supports a similar OS-assisted
TLB coalescing scheme with the Svnapot extension [22].

The performance potential of these intermediate translation
sizes remains largely unexplored, as robust OS support for
coalesced translations is mostly missing (Section II-A). Pre-
liminary transparent support in Linux exists only for 64KiB
translations and only for native execution via mTHP [13, 14].
The cumbersome HugeTLB interface supports both 64KiB and
32MiB translations, albeit only for native execution (Table II).

State-of-practice and start-of-the-art systems mainly focus
on the 4KiB / 2MiB / 1GiB page sizes supported by x86
(Table II). Most designs target 2MiB pages, attempting to
maximize performance by deciding when, how, and which
4KiB base pages to promote to a 2MiB large page. ARMv8
and RISC-V architectures support more translation sizes
via OS-assisted TLB coalescing. Their transparent support
remains limited and their performance largely unexplored.

III. MOTIVATION

A. OS-assisted coalescing: Performance potential

To assess the performance potential of 64KiB and 32MiB
translations, we use an ARMv8-A server to evaluate them,
via the HugeTLB interface, versus 4KiB, 2MiB and 1GiB
pages, for both native and virtualized scenarios. For virtualized
execution, we extend Linux and KVM to support contiguous-
bit intermediate translations. Figure 2 summarizes our results

Virtual AS

4KB 2MB

VA aligned to 64KB VB aligned to 32MB

Physical AS

PA aligned to 64KB PB aligned to 32MB

16 pages16 pages

CR3
PMD

…

PGD

.

.

.

.

.

.

.

.

.

.

.

PUD

…

PTE

c
c

c
c

c
c

c
c

1

2
1 Aligned PFN

Contiguous Bit

3

64KB

CPU

L1 TLB

L2 TLB

32MB52
Attr

64KB
32MB

Fig. 1: ARMv8-A OS-assisted TLB coalescing

astar omnet streamcl
1.0

1.1

1.2

1.3

1.4

1.
10

1.
09

1.
041.

10 1.
12

1.
04

1.
11 1.

14

1.
04

1.
11 1.

14

1.
04

Native

astar omnet streamcl
1.0

1.1

1.2

1.3

1.4

1.
09 1.

15

1.
11

1.
11

1.
23

1.
15

1.
11

1.
23

1.
16

1.
12

1.
23

1.
16

Virtualized

canneal svm hashjoin
1

2

3

4

1.
00

1.
02

1.
021.
21 1.

46 1.
63

1.
24 1.

58 1.
82

1.
24 1.

60 1.
85

canneal svm hashjoin
1

2

3

4

1.
01

1.
03

1.
001.

52 2.
05

2.
69

1.
61

2.
46

3.
51

1.
61

2.
48

3.
55

64KiB 2MiB 32MiB 1GB

Sp
ee

du
p

no
rm

al
iz

ed
 to

 4
Ki

B

Fig. 2: Performance of HugeTLB intermediate-sized transla-
tions on a non-fragmented ARMv8-A machine

for two sets of workloads (discussed in Section VI): i) memory
intensive workloads that operate on small objects (top) and ii)
big-memory workloads (bottom).

We observe that for the first set of workloads, 64KiB
translations provide up to 10% (native) and 15% (virtualized)
performance benefit over 4KiB pages; almost matching the
performance of 2MiB pages in some cases. 64KiB translations
could be leveraged to improve address translation perfor-
mance while obviating the need for larger 2MiB allocations,
especially under memory pressure or fragmentation [11].

For the second set of workloads, 32MiB translations often
outperform 2MiB large pages, by up to 30% in virtualized
execution. Notably, they provide performance close to that
of 1GiB pages. 32MiB translations can effectively mitigate
translation costs that 2MiB pages are unable to cover, while
relaxing the contiguity requirements of 1GiB pages, that are
extremely hard to meet on a long-running system [9–11].

64KiB and 32MiB translation sizes provide significant per-
formance gains and can be exploited to address limitations
exhibited by the 2MiB / 1GiB large page model.

B. The conundrum of translation size selection

Support for a single transparent large page size, as im-
plemented in Linux and FreeBSD, reduces translation size

4

0.0 0.20

2

Hardware TLB miss sampling

0 50.0

0.2

0 5
GBs

0.0

0.2

astar
canneal

svmTL
B

m
iss

es
 p

er
 b

in
 (%

)

Heap VAS in 2MB bins (faulted)

(a)

0.0 0.20

1
Access Frequency Sampling

0 50.0

0.1

0.2

0 5
GBs

0.0

0.1

0.2

astar
canneal

svm

M
em

or
y

ac
ce

ss
es

 p
er

 b
in

 (%
)

Heap VAS in 2MB bins (faulted)

(b)

Fig. 3: Narrow address space regions account for most of the
translation overhead (MMU hotspots). HW-assisted sampling
is able to detect them at a higher resolution than page access
frequency sampling.

selection to a binary decision per 2MiB region of the virtual
address space: whether to back each region by a 2MiB page or
not. Intermediate-sized translations complicate size selection.
We need a methodology to estimate the performance impact
of different translation sizes on the different regions of a
workload’s address space.

We use MMU overhead as a proxy for estimating the per-
formance impact of translation size [4, 5]. To that end, we use
fine-grained HW-based TLB miss sampling to identify the TLB-
miss heavy regions of a process address space. We leverage
the ARMv8-A Statistical Profiling Extension (SPE) [21] to
sample the TLB misses of workloads and track the virtual
address and page walk latency for each sampled miss.

Figure 3a shows the distribution of misses for three MMU-
intensive workloads, divided in 2MiB bins. There are wide
regions which exhibit minimal overheads, and narrow spikes
that are responsible for the majority of the TLB misses.
Notably, a single 2MiB region is responsible for ∼5% of
the total TLB misses for astar. Such fine-grained translation-
overhead information can be leveraged to optimally assign
different translation sizes to different virtual regions based on
the MMU pressure they generate.

Prior art relies on page-based access frequency sampling to
estimate MMU overhead [3, 4, 8] and guide 2MiB promo-
tions [3, 4]. Figure 3b presents the access frequency heatmaps
for the same workloads, generated by periodically sampling
the access bit of each populated page of the address space [4].
HW-assisted sampling is able to identify MMU hotspots
at a higher resolution. Not every frequently accessed page
contributes equally to translation overhead. We elaborate on
this in Section VII.

The address space of memory intensive workloads exhibits
translation overhead hotspots. HW-based sampling man-
ages to accurately detect them, unlocking the potential for
informed translation size selection.

Virtual

4KB 2MB

VA aligned to 64KB VB aligned to 32MB

Physical
PA aligned to

64KB
PB aligned to 32MB

PTE
Fault

1 PMD
Fault

2

PMD

.

.

.

2
PFN

PFN+512
PFN+1024

…
PFN+7680

52

1
1
1

1

1

PTE 1
PFN

PFN+1
PFN+2

…
PFN+15

52

1
1
1

1

1

PUD
PGDcr3

Fig. 4: ET contiguous bit management during a PMD (2MiB)
(2) and PTE (4KiB) (1) fault

IV. ELASTIC TRANSLATIONS

We design and implement Elastic Translations (ET), syn-
ergistic mechanisms and policies (Table I) that i) enable the
OS to transparently generate and manage intermediate-sized
translations in native and virtualized environments (Trans-
parent Contig-bit, CoalaPaging, CoalaKhugepaged) and ii)
optimize translation size selection from the now extended pool
of available translation sizes (Leshy).

A. Transparent contiguous bit management

In order to transparently support and opportunistically create
intermediate sized translations, ET needs to i) detect suitably-
aligned contiguously-mapped pages, and ii) transparently pro-
mote them to intermediate-sized translations by setting the
contiguous bit in each page table entry. Coalesced translations
must also be demoted when their constituent pages are no
longer contiguous. Figure 4 depicts our mechanism. Whenever
a page table entry is created or modified, ET checks the N
(16 in our case) page table entries which belong to the same
coalescing range. That is the 16 neighbouring entries in a
64KiB range for 4KiB page entries (PTEs) or a 32MiB range
for 2MiB page entries (PMDs), starting from the first 64KiB-
or 32MiB-aligned entry. If every entry in this range is: i)
suitably aligned, both physically and virtually, i.e., for a 4KiB
PTE, mapping the virtual page number (VPN) to a physical
frame number (PFN), [PFNmod16 == V PNmod16], ii)
physically contiguous with regard to the other entries in the
range, i.e., for a 4KiB PTE [PFNn+1 == PFNn +1], and
iii) has compatible page flags and access permissions as the
rest of the range entries, we promote the range, by setting the
contiguous bit in each PTE or PMD in the range. Reversely,
when a page entry modification invalidates any of the above,
we demote the range by clearing the contiguous bit accord-
ingly and flushing the corresponding TLB entry. When the
range is not fully faulted in, ET falls back to the default Linux
path for setting the PTE or PMD respectively. We quantify the
latency overhead of our mechanism in Section VII.

Whenever the size of a translation entry changes, ARMv8-A
mandates invalidating the entry and flushing it from the TLB.

5

Virtual AS
VA aligned to 64KB

Physical AS

PA aligned to 64KB

PMD
PTE

. . .

Page Fault

2

……..

T

……..
Target PFN Calc.

P
FN

+1

4K 8K 64K 32M

1

3

4

5

6

7

Buddy Allocator Freelists

Fig. 5: CoalaPaging target PFN calculation and allocation

This rule is called break-before-make in the architecture refer-
ence manual [21]. This is always required when demoting an
intermediate translation, since leaving stale contiguous entries
in the TLBs can enable otherwise invalid memory accesses.
However, transparently creating an intermediate translation by
setting the contiguous bit does not invalidate its constituent
page translations that may be still cached. They still map to
the same memory locations with the same permissions. This
obviates the need for a TLB flush, thus, as an optimization,
we opt for lazily flushing newly-promoted page table entries.
Virtualization support. ET also supports virtualized execution
under KVM, transparently managing the contiguous bit in
the nested page tables. HW-assisted virtualization utilizes
nested paging for memory virtualization. The guest OS page
tables translate guest virtual addresses (GVA) to guest physical
addresses (GPA). The nested page tables, managed by KVM,
translate these GPAs to actual host physical addresses (HPAs).
The TLB then caches GVA to HPA translations [32, 40].

For ET, the contiguous bit in the guest page tables is man-
aged by the guest OS as described in the previous paragraphs.
The contiguous bit in the nested page tables is managed
during nested faults by KVM. Allocations triggered by nested
faults will eventually need to update the host page tables of
the virtual machine monitor (VMM). ET already hooks this
path, as the VMM is a regular host process, and will thus
detect and promote coalesce-able ranges in the VMM host
page tables. We extend KVM so that these promotions are
reflected to the nested page tables of the VM, by setting the
contiguous bit of the corresponding shadow page table entries
(SPTEs). Similarly, whenever the host demotes an intermediate
translation, e.g., due to unmapping or migration, KVM is
notified and demotes the corresponding SPTEs. By promoting
intermediate translations in both host and guest, ET allows the
caching of coalesced 2D GVA to HPA translations in the TLB.

B. Coalescing-aware Paging

To generate the inter-page contiguity required for
intermediate-sized translations, we design a coalescing-aware
allocation policy, CoalaPaging, based on contiguity-aware
paging (CAPaging) [27]. Our goal is to maximize the forma-
tion of suitably aligned and contiguous ranges of pages, i.e.,
64KiB ranges for PTEs and 32MiB for PMDs. The core idea

is that we mirror the TLB coalescing logic in the allocation
path. On each fault, we attempt to either create or extend a
contiguous and aligned 64KiB or 32MiB range of pages, by
scanning the page tables and selecting a suitable target page.
Figure 5 depicts the coalescing-aware allocation process.
First fault. When handling a fault, CoalaPaging scans the page
table entries of the 64KiB- or 32MiB-aligned range which the
faulting address belongs to. For the first fault within such a
range, we attempt to find a suitably sized and aligned free
block. We then find and allocate the page of the block whose
PFN alignment with regard to the coalescing factor matches
the alignment of the faulting address.

For a 64KiB range of 16 4KiB pages, CoalaPaging finds a
free 64KiB block, by searching the order-4 (64KiB) and higher
free-lists of the buddy allocator and allocates the 4KiB page
whose [PFN mod 16 == VPN mod 16], where PFN is the
physical frame number of the page and VPN is the virtual page
number of the faulting address. However, CoalaPaging neither
allocates nor reserves the block. Once the target page is allo-
cated, the remaining pages are added back to the allocator free-
lists. To maximize the time window during which these pages
remain available, we append them to the tail of their respective
buddy lists. Figure 5’s steps 1-3 depict the allocation process
for the first fault in a coalescing range. CoalaPaging operates
in a similar way for THP faults, but now has to find 32MiB
(order-13) free blocks. Linux only tracks by default contiguous
blocks up to 4MiB (order-10). We therefore configure it to
track up to 32MiB blocks in its allocator free lists.
Subsequent faults. To identify the target physical page for
subsequent faults, CoalaPaging scans the page table entries of
the 64KiB or 32MiB range that the faulting address belongs
to, searching for a populated page table entry. When such a
previously faulted PFN is found, CoalaPaging uses it as an
anchor to calculate the allocation target. Specifically, Coala-
Paging first checks that the anchor PFN is properly aligned
(as described in the preceding paragraph), and if not, it aborts
the CoalaPaging allocation. We then align the anchor PFN to
64KiB or 32MiB, depending on fault type, and add the relative
index of the faulting VA within the 64KiB or 32MiB range.

CoalaPaging extracts all the necessary information for the
target PFN calculation from the page table state, eliminating
any additional metadata requirement, in contrast to e.g., CA-
Paging. Figure 5’s steps 4-6 depict the process. In Section VII
we quantify the latency overhead of page table scanning.
Multi-programmed Execution. In a multi-programmed sce-
nario, CoalaPaging coordinates fault-time allocations of differ-
ent programs, directing them to different parts of the physical
address space. As described in IV-B, the first CoalaPaging fault
in a 32MiB range will allocate a single 2MiB page from
a free 32MiB block and release the rest back to the buddy
lists. Subsequent faults in this 32MiB VA range will use
the page table to compute the anchor PFN and request the
correct physical page based on the faulting VPN. Concurrent
allocation requests from other programs will follow the same
steps, either allocating a 2MiB page from a new 32MiB block
or attempting to allocate one from the previously split 32MiB

6

Virtual
2MiB

Physical

32MiB aligned
Candidate for
 promotion

Occupied by same
or other process

Coala-aware
swap

Candidate for
 promotion

64KiB
aligned

Fig. 6: Coalescing-aware khugepaged

block, based on information found in the page table. As a
result, different programs under ET do not compete for the
same buddy blocks and are all able to create 32MiB mappings
across faults, on a best-effort basis, as long as there is 32MiB-
contiguity available in the system. The same applies for 4KiB
faults and 64KiB translations. We evaluate ET effectiveness in
multi-programmed scenarios in Section VII-A.
Virtualization support. CoalaPaging works without any modi-
fications in virtualized execution. It is independently employed
by the guest and the host – generating contiguity independently
in the two dimensions. As guest faults trigger nested faults
on the host, this simple scheme is sufficient to generate 2D
contiguity, similarly to THP [27].

C. Coalescing-aware promotions

ET also supports asynchronous promotions via
CoalaKhugepaged. For 2MiB pages, Linux khugepaged
periodically selects an active process, in a round-robin
fashion, and performs a linear scan of its address space,
promoting any suitable properly-aligned region, not yet
backed by a large page, to 2MiB. In order to promote a
region to 2MiB, khugepaged allocates a new 2MiB page
and copies the constituent base 4KiB pages to the allocated
large page. Khugepaged also includes knobs to control the
allocation aggressiveness and CPU overhead of scanning and
migrations, allowing the user to control how many pages
to scan or collapse per second and including a back-off
policy when large page allocations fail due to external
fragmentation. CoalaKhugepaged augments khugepaged for
optimized coalescing-aware promotions to intermediate-sized
translations (64KiB and 32MiB). CoalaKhugepaged works
synergistically with CoalaPaging by taking advantage of
partially contiguous groups of pages to reduce the number
of migrations required for promotion. When CoalaPaging is
able to create only a partially contiguous range at fault time,
CoalaKhugepaged will attempt to utilize in-place promotions,
migrating only misplaced pages to their target PFN if possible
(Figure 6). If any of the target PFN cannot be replaced (e.g.,
due to unmovable pages [9]), CoalaKhugepaged will fallback
to the default khugepaged behavior, migrating the whole range
to freshly allocated memory. To that end, we also tune the
Linux compaction logic to work for intermediate-sized blocks
(i.e., 32MiB). Asynchronous promotions to intermediate-sized
translations, apart from improving resilience to external
fragmentation, enable ET to take advantage of informed
runtime promotion policies as discussed in IV-D.

SPE sampling
TLB misses

#T
LB

 m
is

se
s

Address Space

Leshy placement algorithm
generates page size hints

prioritizing MMU hotspots

MMU Heat Map

Fig. 7: Leshy tracks the MMU pressure per virtual page and
uses this translation overhead heatmap of the address space to
calculate translation size hints.

Fairness. CoalaKhugepaged prioritizes ET-enabled processes,
instead of iterating over all running processes in the system
(same as [4]), and substitutes linear address-space scan with
priority-address-range scanning, guided by TLB miss profiling
(as described in IV-D). When multiple ET-enabled processes
run in the system, CoalaKhugepaged will distribute contiguity
among them in a round-robin manner, similar to [4].

D. Translation size selection policies

With the ET in-kernel mechanisms in-place, we now devise
selection policies to harness the performance potential of the
expanded range of supported translation sizes.
Fault-time allocation. At fault time, CoalaPaging uses the size
of the faulting virtual memory area (VMA) as an estimator
to guide translation size selection. Specifically, when 64KiB
translations are able to cover the entire faulting VMA while
staying within TLB reach, CoalaPaging attempts to oppor-
tunistically create 64KiB translations via base 4KiB fault-time
allocations. For larger VMAs, CoalaPaging aims for oppor-
tunistic 32MiB translations via THP faults (Section IV-B).
Similarly to mTHP [13], we employ an incremental fallback
policy to smaller translation sizes in case of allocation failure.
Asynchronous promotions. For asynchronous promotions, in
contrast to khugepaged and similarly to prior art [3, 4], we
attempt to estimate which memory regions to scan, migrate
and promote to larger translations. We must also decide which
translation size to use for each region. To that end, we
design Leshy, a profiler that leverages ARMv8-A Statistical
Profiling Extensions (SPE) to sample the TLB misses of
running workloads. We decide to sample TLB misses instead
of the per-page access frequency, as prior work does [3, 4],
based on our analysis in Section III. In Section VII we quantify
the accuracy and overhead of both methods. Leshy analyzes
the TLB misses and generates a translation overhead heat-map
of the address space, aggregating the misses per virtual page
(Figure 7). Leshy then sorts regions by MMU hotness and
attempts to optimally map the working set to translation sizes
based on translation overhead.

We use Leshy to periodically profile workloads at runtime
and compute optimal translation size hints for each region of
the process address space online. We then load the computed
hints into the kernel at runtime via an extended madvise()
interface and use them to drive the in-kernel ET mechanisms.
The hints are sorted by MMU overhead and are loaded and
stored in the kernel in that order. As discussed in Section IV-C,
for asynchronous promotions, CoalaKhugepaged will traverse
the hints in sorted order, prioritizing promotions for the MMU

7

hotspots of the address space. When offline profiling is an
option [5], the hints can be computed and loaded in advance,
enabling CoalaPaging to utilize them at fault time, improving
upon the greedy fault-time allocation policy. We retain the
fault-time fallback policy in case of allocation failure.
Optimal size selection. In order to optimize translation size
selection and generate translation size hints, Leshy needs
to find a non-overlapping mapping of address space regions
to translation sizes. This mapping should contain a limited
number of translations, N and cover a target percentage of
the sampled TLB misses. We use the TLB size (entries) for
N and set the coverage target to 99.99% of the total sampled
TLB misses. Additionally, the mapping should use the least
contiguity-taxing combination of translation sizes that satisfy
the above constraints.

To that end, we aggregate the sampled addresses in bins
of different sizes and for each bin i of sizei we calculate
the total sampled TLB misses, missesi, for all the addresses,
addressesi belonging to it. We then formulate the optimiza-
tion problem as follows:

min
∑
i

sizeixi s.t.
∑
i

missesixi ≥ target∑
i

xi ≤ N, xi ∈ {0, 1}⋂
i

addressesi = ∅

(1)

Algorithm 1: Calculating size hints from TLB misses
1 TlbMisse s = Sample (Workload , D u r a t i o n)
2

3 f o r each S i z e
4 A g g r e g a t e M i s s e s (Al ign (VA, S i z e) , Bin [S i z e])
5 f o r VA in TlbMis se s
6 S o r t (Bin [S i z e])
7

8 f o r each S i z e :
9 E n t r i e s = Take E n t r y from Bin [S i z e]

10 w h i l e CoveredMisses (E n t r i e s) < T a r g e t
11 i f CoveredMisses (E n t r i e s) >= T a r g e t
12 S e l e c t i o n = E n t r i e s
13 I n i t i a l S i z e = S i z e
14

15 w h i l e CoveredMisses (S e l e c t i o n) >= T a r g e t
16 f o r each S i z e < I n i t i a l S i z e
17 S e l e c t i o n = S u b s t i t u t e (S e l e c t i o n ,
18 I n i t i a l S i z e , S i z e)
19

20 S o r t (S e l e c t i o n)
21 Re tu rn S e l e c t i o n

To compute the translation size hints, we first sort the bins
based on the total number of misses caused by each aggregated
address (entry). We then follow a best-fit approach, whereby
we first calculate the minimum translation size (initial size)
that is able to cover the target TLB misses with N or less
entries. Starting from this initial selection of M entries, we
retain the M − 1 entries with the most TLB misses and
recursively attempt to substitute the discarded Mth entry with
a sub-selection of smaller-sized entries that are able to match
the target misses while not exceeding the configured TLB
capacity N .

V. DISCUSSION

A. Memory Management

Allocation policies. Another approach to generate the conti-
guity required for intermediate-sized translations is to eagerly
allocate 64KiB (order-4) and 32MiB (order-13) pages during
faults. As discussed in Section II, Linux recently added support
for sub-2MiB faults [13] (mTHP). We evaluate mTHP in
Section VII and find that, for 64KiB faults, the fault latency
remains bounded. However, we also show that extending this
design to 32MiB faults results in inflated fault latency. By
contrast, CoalaPaging can seamlessly and efficiently support
both 64KiB and 32MiB translations. We consider integrating
mTHP to ET, as an alternative mechanism for generating sub-
2MiB contiguity at fault time, for future work. Async pre-
zeroing [4, 5, 8] can also be used to reduce fault latency
for larger fault-time allocations; however, it comes with non-
negligible CPU overhead. CoalaPaging can be nonetheless
seamlessly integrated and take advantage of async pre-zeroing
for faster 2MiB faults.

Reservation-based schemes [6, 18, 19, 47] could be used
instead of eager allocations in order to reserve larger blocks
of memory at fault-time without penalizing fault latency.
Similarly to opportunistic designs [27], such as CoalaPaging,
reservations trade-off the reduced fault latency with delayed
creation of larger translations [6]. Compared to opportunistic
designs, reservations opt for stronger guarantees for across-
fault contiguity, which however incurs book-keeping overhead
and increases memory bloat [6].
Transparent 1GiB support. ET focuses on the transparent
support for intermediate translation sizes supported by OS-
assisted TLB coalescing. We consider extending i) CoalaPag-
ing to opportunistically create 1GiB mappings and ii) Leshy to
take into account 1GiB translations and emit 1GiB hints as
future work. That said, as we show in Section III, for a range of
applications the ET-enabled 32MiB translations are sufficient
to alleviate MMU overheads without resorting to the harder
to allocate and manage 1GiB pages.
Demotions. ET does not currently support the dynamic de-
motion of translations to smaller sizes, which can lead to
sub-optimal distribution of available contiguity. We consider
extending Leshy to detect cold parts of the address space and
generate demotion hints by periodically sampling the memory
access frequency of previously promoted regions. For OS-
initiated demotions (e.g., in the case of page migrations),
ET will automatically demote the 32MiB translation (Section
IV-A), if it exists, as well.
Hints in virtualized execution. Using TLB miss sampling to
generate hints for virtualized workloads is challenging [48],
as sampled VAs are not readily usable by the hypervisor. We
use it only in the guest and fallback to access bit tracking
in the host as a proxy for the MMU overhead of the VM
([3, 4]). We consider exploring a paravirtualized interface [49]
to allow virtualized workloads to take full advantage of the
Leshy-generated hints as future work.

8

Workload Description Footprint
astar A* pathfinding algorithm [51] 400MiB

omnetpp Network Simulator [51] 150MiB
streamcluster Online Clustering [52] 100MiB

BFS GAPBS [53] BFS on the Friendster [54] graph 88GiB
canneal Chip Routing [52] 14GiB

XSBench Monte Carlo Cross Section Lookup [55] 122GiB
SVM Support Vector Machine library [56, 57] 39GiB
BTree Lookups in a BTree [8] 33 GiB

hashjoin Hashjoin microbenchmark 70GiB
GUPS HPCC random updates benchmark [58] 32 GiB

TABLE III: Evaluation Workloads

B. Architectural considerations

TLB micro-architecture. The micro-architecture of the N1
ARMv8-A core features unified TLBs with regard to trans-
lation size. Every TLB entry can be use to store translations
of any of the supported sizes. For split TLBs, translation size
selection will need to take the different capacities into consid-
eration [50]. Moreover, as discussed in Section IV, demoting
coalesced translations requires invalidating and flushing the
constituent pages. ARMv8-A supports HW-based invalidations
for maintaining TLB coherence. Additionally, ARMv8-A has
recently added support for range-based HW TLB flushes and
invalidations, which should further accelerate TLB coherence.
This is in contrast to x86, which handles TLB invalidations
in SW with costly interprocessor interrupts. For the latter
case, we should also factor in the cost and frequency of TLB
shootdowns, potentially forgoing promotions if their benefit
would not amortize the aforementioned costs [5].
Portability. While we focus on ARMv8-A, ET can be extended
to different architectures and translation sizes. The Svnapot
extension [22] adds support for OS-assisted TLB coalescing to
RISC-V. RISC-V allocates more bits in the page table entries
to encode the coalescing factor, hence extending the range of
the supported translation sizes. We plan to port our prototype
to RISC-V and evaluate ET with Svnapot.
Access and Dirty Bits. ARMv8-A supports HW-based tracking
for page accesses (access (A) bit) and modifications (dirty (D)
bit). When a page of an intermediate translation is accessed or
modified, the architecture allows the MMU to set the AD bit
of any of the constituent pages of the intermediate translation.
This has the side-effect that the OS must now check the AD bit
status of all the constituent pages of an intermediate translation
in order to determine the AD status of a constituent page. For
anonymous mappings, that we currently target with our design,
this can affect the performance anonymous memory reclaim
(swapping). We consider studying this effect for future work.

VI. METHODOLOGY

Experimental Setup. We implement ET for Linux v5.18 and
evaluate it on Ubuntu 22.04 for both native and virtualized
execution. For virtualized execution, we use KVM and Qemu
v7. For the evaluation, we use an Ampere Altra server [59, 60],
with 2 nodes of 80 ARMv8-2A+ Neoverse N1 cores [61], each
with 256GiB of memory. The MMU includes separate data
and instruction fully-associative L1 TLBs of 48 entries each,
and a unified 5-way set-associative L2 TLB of 1280 entries
of any size. L1 misses cost ∼3 cycles and L2 misses over

15 cycles. To minimize jitter, we use a single NUMA node,
pin each thread on a single core and set the core frequency
to 2.7GHz. We also replace GNU libc’s malloc [62] with
gperftools tcmalloc [63] similar to [27, 30, 35, 39].
Performance Metrics. We use end-to-end execution cycles and
L2 TLB misses, reported by the HW performance counters
of ARMv8 PMUv3 [21] as the main evaluation metrics. To
quantify the ET effect on fault latency, we use the Linux
tracing subsystem to instrument the kernel fault handling path.
Fragmentation. For the fragmentation scenarios, we allocate
all of the node memory and then release small chunks at
the start of each 2MiB page, similarly to [3–6]. For each
workload, we release memory until i) the free memory in the
system equals the footprint of the workload and ii) the Free
Memory Fragmentation Index (FMFI) [64] for 2MiB (order-
9) pages equals a defined threshold, reported as a percentage
X%. Without asynchronous promotions, the workload would
run with X% of its footprint backed by 2MiB pages.
Workloads. We use applications that exhibit varying TLB
sensitivity to evaluate the behavior and effectiveness of ET. We
include workloads with large footprints and varying degrees
of access irregularity. These workloads are typically backed
by 2MiB pages and some can push 2MiB pages to their limit
in terms of effectiveness. We also evaluate workloads with
smaller footprints but highly irregular access patterns. Table
III provides a description of the evaluation workloads.
Evaluation scenarios. We use the 4KiB performance of Linux
as the baseline. We compare ET with Linux THP and mTHP.
As discussed in Section II (Table II), mTHP enables 64KiB
translations through faults, as a fallback to 2MiB allocations.
We also port HawkEye [4] to Linux v5.18 and ARMv8-A and
compare it with ET. For mTHP, we use Linux v6.8 and we also
report the 4KiB performance of Linux v6.8 for reference. To
understand the effect of runtime sampling and hint generation
versus offline profiling, we use Leshy to sample workloads and
generate translation-size profiles in advance, which we then
load into the kernel when the workload is spawned (ET-offline).
Finally, we compare the ET fault latency to 4KiB, 64KiB,
2MiB and 32MiB synchronous faults. As 32MiB faults are
not transparently supported by (m)THP, we use a kernel built
with a 16KiB base page size (granule) [21], which increases
the THP large page size to 32MiB.

VII. EVALUATION

A. Native Execution

We first run the workloads natively on a freshly booted
machine. Figure 8 summarizes our results for (a) execution
time speedup and (b) TLB miss reduction. Figure 9 shows
the corresponding distribution of translation sizes for each
method. We present a single bar for both THP and mTHP
as their distributions are almost identical. Since the memory
is not fragmented, asynchronous promotions are rare, which
allows us to isolate the effect of fault-time allocation policies.
ET uses the size of the faulting VMA to guide translation
size selection, while ET-offline uses the Leshy generated hints

9

Streamcl
Astar

Omnet
BFS

Canneal

XSBench
BTree

Svm
Hashjoin

Gups
0.0

0.5

1.0

1.5

2.0

2.5
Sp

ee
du

p
to

 4
Ki

B

64KiB Friendly 2MiB Suff. 32MiB Ben.

1.
04 1.
09 1.
12

1.
10 1.

22 1.
31 1.

47

1.
45 1.

64

2.
12

1.
05

1.
07

1.
08 1.
10 1.

24 1.
34 1.

56 1.
58 1.

85

2.
48

1.
05 1.
09 1.
12

1.
10 1.

26 1.
33 1.

56

1.
58 1.

85

2.
48

THP mTHP Hawkeye ET ET-offline

(a) Speedup

Streamcl
Astar

Omnet
BFS

Canneal

XSBench
BTree

Svm
Hashjoin

Gups
0

25

50

75

100

125

150

L2
 T

LB
 m

is
s

re
du

ct
io

n
(%

) 64KiB Friendly 2MiB Suff. 32MiB Ben.

10
0.

00

10
0.

00

10
0.

00

83
.3

0

75
.9

4

70
.4

6

67
.6

1

67
.4

3

13
.7

1

7.
42

81
.2

0 98
.3

5

94
.3

4

99
.9

6

99
.0

9

99
.2

9

99
.2

4

99
.8

8

99
.9

7

10
0.

00

81
.1

6 10
0.

00

10
0.

00

99
.9

4

99
.9

0

97
.2

9

10
0.

00

99
.8

6

99
.8

4

10
0.

00

THP mTHP Hawkeye ET ET-offline

(b) TLB miss reduction

Fig. 8: Elastic Translations (ET) performance on a non-fragmented node for native execution

Fig. 9: Distribution of translation sizes

(Section IV-D). Based on the performance and translation size
distribution, we discern three groups of workloads:
64KiB-friendly workloads. For workloads with small foot-
prints, i.e. Astar, Omnetpp, Streamcluster, ET uses CoalaPag-
ing to opportunistically map them with 64KiB translations, via
coalescing-aware 4KiB allocations at fault time (Figure 9).
This significantly reduces TLB misses (Figure 8b) and the
overall performance is close to (m)THP (Figure 8a). The
results are in line with our motivational analysis (Section III)
and show that CoalaPaging is able to successfully generate
64KiB translations across 4KiB faults. mTHP does not lever-
age 64KiB faults as 2MiB allocations always succeed.
2MiB-sufficient workloads. For Canneal, XSBench and BFS,
ET utilizes coalescing-aware 2MiB faults to eventually map
their footprint with 32MiB translations (Figure 9). This results
in a 16-30% reduction in TLB misses compared to (m)THP,
but translates to only minor execution speedups up to 3-4%.
2MiB translations are sufficient for these workloads.
32MiB-beneficiary workloads. For the highly irregular work-
loads, BTree, SVM, Hashjoin and Gups, ET eliminates TLB
misses, using 32MiB translations to cover 97-99% of their
footprint. This boosts performance by 19% on average and
up to 39% versus THP. These results match our motivational
analysis (Section III) and demonstrate that ET effectively and
transparently supports all translations sizes. No other design
supports 32MiB translations.

For the larger workloads, mTHP appears to perform slightly
worse than THP. This is only due to a slightly worse baseline
performance (4KiB) of Linux v6.8 (2-3%) and not due to
reduced address translation performance (Figure8b). HawkEye
has identical performance to (m)THP as it always uses 2MiB
faults [5] and its async prezeroing has negligible impact.

MMU hotspots. To further study the performance potential
of multiple translation sizes, we run Leshy offline for all
workloads and load the computed translation size hints into
the kernel when each workload is spawned. This way Coala-
Paging allocations are no longer eager; they are instead guided
(Section IV). Figure 9 shows that TLB misses are frequently
localized to specific address space regions (Section III). ET-
Offline is able to detect these hotspots and map only them with
larger translation sizes. For example, for XSBench, Svm, BFS
and Hashjoin, it uses 4KiB pages for 93%, 34%, 64% and 45%
of their address space, mapping the rest with a combination
of 2MiB and 32MiB translations. This significantly reduces
the usage of larger translations while sustaining performance
(Figures 8a, 8b). For Canneal and BTree, Leshy uses a
combination of 2MiB and 32MiB translations for their entire
footprint. For Omnetpp and Astar, it uses a combination
of 64KiB and 2MiB translation sizes to minimize MMU
overheads, while for Streamcluster it exclusively uses 64KiB.
For Astar and Omnetpp, Leshy overestimates the importance
of some TLB misses, which results in ET-Offline using larger
translations compared to ET, with only minor improvements
in TLB miss reduction and overall performance. These results
lay the ground for the online guided asynchronous promotions
discussed later.

Takeaway 1: One size does not fit all. ET successfully gen-
erates 64KiB and 32MiB translations across faults, relaxing
the need for 2MiB pages and improving performance by
up to 39% over THP.

B. Virtualized Execution

We also evaluate ET in virtualized execution. Figure 10
presents the results without fragmentation. We omit the results
for mTHP as it doesn’t support virtualized execution. The
costly nested page walks magnify AT overheads, necessitating
larger translation sizes. Omnetpp, which was covered by
64KiB translations in native execution, requires some 2MiB
pages to sustain performance in virtualized environment. Sim-
ilarly, 2MiB pages are no longer sufficient for Canneal and
XSBench, which now require 32MiB translations. Despite its
opportunistic nature (Section IV), CoalaPaging manages to
effectively generate contiguous 64KiB and 32MiB translations

10

Streamcl
Astar

Omnet BFS
Canneal

XSBench
BTree Svm

Hashjoin Gups
0

2

4

6

Sp
ee

du
p

to
 4

Ki
B

64KiB Friendly 2MiB Suff. 32MiB Ben.

1.
07 1.
14 1.
24

1.
22 1.

51 1.
76 2.

17

2.
04 2.

60

4.
24

1.
08

1.
14 1.
24

1.
21 1.

49 1.
72 2.

10

1.
99 2.

50

4.
41

1.
08

1.
14 1.
24

1.
22 1.

58 1.
88 2.

35 2.
43

3.
29

5.
76

THP Hawkeye ET

Fig. 10: ET performance in virtualized execution

in both guest and host. This translates to significant speedups
for big-memory workloads, 30% on average and up to 150%
over THP. HawkEye performs slightly worse than THP as
there is no fragmentation, thus both systems eagerly allocate
2MiB pages at fault time [5], while HawkEye scanning and
pre-zeroing are costlier in a 2D set-up.

Takeaway 2: ET successfully enables intermediate transla-
tion sizes in virtualized execution. The costlier pagewalks
magnify ET benefits, speeding-up execution by 30% on
average and up to 150% over THP for large workloads.

C. External fragmentation

Figure 11 presents the results for two fragmentation sce-
narios, 50% and 99% (Section VI) for native execution. For
smaller workloads it was challenging to consistently generate
fragmentation, due to their small footprints, so we omit
their results. As the fragmentation increases, all methods
increasingly rely on asynchronous migrations to generate large
translations. This allows us to evaluate the effect of asyn-
chronous promotion policies. ET asynchronous promotions are
guided by Leshy translation size hints, which are generated
online by periodically sampling the TLB misses of each
running workload. We also show results for ET-offline, where
ET asynchronous promotions are guided by optimal hints pre-
calculated by Leshy offline. The fault allocation policy remains
unchanged in both cases, unlike the previous section where
offline hints were also used by ET during faults. As expected,
increased fragmentation negatively impacts performance for
all methods. However, ET outperforms or at least matches
state-of-practice and state-of-the-art.
2MiB-Sufficient. For Canneal, all methods perform almost
equally, as the workload runs long enough for all methods
to promote the entire address space to large pages. For BFS,
ET improves performance by 6% over both THP and HawkEye
and for XSBench by 20% and 4% respectively. The reason is
two-fold; a) Leshy successfully identifies at runtime the MMU
hotspots and prioritizes their promotion and b) ET leverages
64KiB and 32MiB translations, which albeit unnecessary
without fragmentation, are beneficial for the workloads when
memory is fragmented. Consequently, ET manages to sustain
higher performance while reducing large page usage by 50%
on average compared to THP. HawkEye effectively detects

Fig. 11: ET native performance under fragmentation

the MMU hotspots for XSBench, but ET’s higher resolution
achieves slightly better performance while reducing 2MiB
usage by 20%. mTHP falls back to 64KiB translations at
fault time, which improves performance by ∼2% for some
workloads. However, mTHP-khugepaged always promotes the
formed 64KiB translations to 2MiB, without considering per-
formance impact. These results underline that, while 64KiB
contiguity can be utilized when 2MiB pages become scarce
due to external fragmentation, efficiently taking advantage of
them requires informed promotion policies.
32MiB-beneficiary. For BTree, SVM and Hashjoin, ET outper-
forms both state-of-practice and state-of-the-art; speeding-up
performance by 12% over (m)THP and 17% over HawkEye
on average when memory is 99% fragmented. Hashjoin and
SVM have MMU hotspots at the tail of their address spaces,
rendering THP linear promotion scanning ineffective. By con-
trast, Leshy successfully detects these hotspots at runtime and
prioritizes their promotion to 32MiB, improving performance
by 16% and 14%. HawkEye is unable to detect these hotspots
as accurately and only promotes few regions to 2MiB. At 99%
fragmentation, Hawkeye performs worse than (m)THP for the
BTree workload, likely due to contention in its internal data
structures, identified also by related work [8].
Online vs Offline. Figure 11 reveals that HW-assisted TLB
miss sampling is able to guide asynchronous promotions at
runtime accurately. In most cases, online profiling and hint
generation (ET) is able to achieve comparable results to hints
computed offline (ET-offline), resulting in similar translation
size distributions. For SVM, the gap between offline and
online performance under 99% fragmentation is attributed to
the differences between a pro-active (offline) and a re-active
(online) method. SVM exhibits a long initialization period
with negligible MMU overheads and abruptly switches to the
MMU intensive part of its execution. With pre-computed hints,
ET-offline is able to start the migrations earlier and by the
time SVM enters its second compute-intensive phase, a large
part of its address space is already optimally mapped. ET’s
online profiling, on the other hand, triggers promotions only
after SVM starts experiencing MMU overheads, which the
profiler detects at runtime. Although longer running workloads
might be able to amortize this cost, this spool-up effect also
underlines the usefulness of offline profiling when possible.

11

BF
S

C
an

ne
al

XS
Be

nc
h

Sv
m

BT
re

e
H

as
hj

oi
n1.00

1.25

1.50

1.75

2.00

Sp
ee

du
p

to
 4

Ki
B

No Frag

BF
S

C
an

ne
al

XS
Be

nc
h

Sv
m

BT
re

e
H

as
hj

oi
n

Frag 50%

BF
S

C
an

ne
al

XS
Be

nc
h

Sv
m

BT
re

e
H

as
hj

oi
n

Frag 99%

THP
CoalaKhuge
Leshy-Offline-CoalaKhuge

CoalaPaging
Leshy
Leshy-Offline-CoalaPaging

Fig. 12: Performance breakdown of ET components

BFS CannealXSBench Svm BTree Hashjoin0

1

2

Sp
ee

du
p

to
 4

Ki
B

1.
01 1.

23

0.
99

1.
34 1.
42

1.
23

1.
06 1.

24

1.
01

1.
47 1.
54

1.
41

1.
10 1.

24 1.
29 1.

53

1.
54 1.

75

THP
ET-sample-offline

ET-access-offline

Fig. 13: TLB miss sampling vs access-bit monitoring accuracy

Takeaway 3: ET accurately detects MMU hotspots at run-
time and prioritizes their optimal mapping to an educated
mix of translation sizes, when running under fragmentation.
This improves performance by 12% on average and up to
20% while reducing 2MiB occupancy by 30% on average.

D. Performance analysis

Figure 12 presents a breakdown of the impact of the various
ET components (Table I) for native execution and increasing
fragmentation levels. We stack the speedup provided by each
component, relative to 4KiB, on top of each other, starting with
vanilla THP. ET comprises a) CoalaPaging that transparently
generates 64KiB and 32MiB translations across faults, b)
CoalaKhugepaged that asynchronously promotes regions to
32MiB translations and c) Leshy that detects MMU hotspots
at runtime via TLB miss sampling, computes translation
size hints and drives CoalaKhugepaged promotions. We also
present the benefit provided by pre-computed (offline) Leshy
profiles, when they drive a) CoalaKhugepaged promotions
from the beginning of a workload’s execution and b) Coala-
Paging fault-time allocations.

The impact of each component depends on fragmenta-
tion level and workload behavior. Under low fragmentation
pressure, ET benefits are mostly driven by CoalaPaging. As
fragmentation increases, CoalaPaging impact diminishes, with
the exception of BFS. BFS exhibits a small MMU-intensive
region at the beginning of its address space. CoalaPaging is
able to map it to 64KiB translations and alleviate translation
overheads, even when 2MiB pages are scarce. For the rest,
CoalaKhugepaged and Leshy dominate performance gains as
fragmentation increases. For BTree, where the distribution

XSbench
Hashjoin

Astar
BTree

Gups
Omnet

SVM BFS
Gups

0

2

Sp
ee

du
p

to
 4

Ki
B Mix1 Mix2 Mix3

1.
34 1.

72

1.
06 1.

58

2.
36

1.
03 1.

48

1.
08

2.
40

1.
41 1.

92

1.
05 1.

68

2.
64

1.
02 1.

58

1.
08

2.
61

THP ET

Fig. 14: ET performance for multi-workload mixes

of TLB misses is relatively uniform throughout its address
space, CoalaKhugepaged’s aggressive promotions to 32MiB
translations, via linear scanning the workload’s address space,
are sufficient to alleviate the AT overhead. By contrast, TLB
misses for XSBench, Hashjoin and SVM are clustered in small
regions at the tail of their address space. For these workloads,
ET performance gains stem from Leshy, as it is able to
accurately detect these TLB-heavy clusters at runtime and
guide CoalaKhugepaged promotions. Pre-computed (offline)
Leshy profiles are mainly beneficial to Hashjoin and SVM,
albeit for slightly different reasons. Hashjoin benefits from
informed CoalaPaging faults when fragmentation is mild as,
due to its short runtime, CoalaKhugepaged is unable to cover
the MMU-intensive parts of its footprint in time. SVM on
the other hand benefits from the fact that with pre-computed
translation hints, CoalaKhugepaged asynchronous promotions
are able to begin early, before the workload enters its MMU-
intensive phase.
TLB miss vs access-bit sampling. We also evaluate the use
of access-bit sampling to generate offline translation size hints
via Leshy. We use hints to guide both CoalaPaging fault-time
allocations and CoalaKhugepaged asynchronous promotions
(similarly to ET-offline in Figures 12 and 8). Figure 13 shows
that for 50% fragmentation translation size hints generated by
Leshy based on sampled TLB misses exhibit higher accuracy.
This corroborates our findings from Section III-B regarding
the relative effectiveness of TLB miss sampling and to some
extent explain why ET outperforms HawkEye even for 2MiB-
sufficient workloads (Section VII-C).

E. Multi-workload experiments

Figure 14 presents the results for THP and ET when
natively running mixes of workloads concurrently without
fragmentation. We run three different mixes of workloads and
plot the speedup achieved for each workload by THP and
ET relative to 4KiB. ET is able to sustain its performance
benefit over THP (cf. Figure 8) in multi-programmed execution
due to the way CoalaPaging coordinates concurrent allocation
requests from different programs (Section IV-B).

F. Overhead analysis

Fault latency. Figure 15 reports the cumulative distribution
function (CDF) for the latency of CoalaPaging faults (64KiB
and 32MiB), as well as 4KiB, 64KiB (mTHP), 2MiB (THP)
and 32MiB (THP-16KiB granule) synchronous faults. We run
a micro-benchmark that triggers 100K random anonymous

12

10
0

10
1

10
2

10
3

Time (usec logscale)

0.00

0.25

0.50

0.75

1.00

C
D

F
4KiB-Fault
64KiB-ET
64KiB-Fault
2MiB-Fault
32MiB-ET
32MiB-Fault

Fig. 15: Fault latency CDF

faults and collects the latency of the fault handler. 64KiB
ET faults exhibit increased fault latency compared to 4KiB.
Linux has an extremely fast path for allocating 4KiB pages
(∼1us), utilizing lockless per-CPU page lists. 64KiB ET faults
are slightly faster than mTHP’s 64KiB faults, as the increased
fault size incurs overhead, e.g., synchronous zeroing. On the
other hand, 32MiB ET faults perform closely to THP and
are an order of magnitude faster than synchronous 32MiB
faults, since synchronous 32MiB faults have to zero large
blocks of memory, while ET relies on smaller fault-time
allocations (2MiB). These results support our design choice to
opportunistically allocate contiguous pages across faults and
underline its benefits versus an alternative design which relies
on larger fault-time allocations [65].
Memory Bloat. In Figure 9, the normalized page distribution
for canneal and streamcluster exceeds 100% for THP and
ET. The reason is that 2MiB pages can increase the effective
memory footprint of workloads [3, 4, 6] compared to 4KiB.
32MiB ET translations do not induce extra memory bloat
compared to THP, owing to the opportunistic coalescing-
aware allocation policy. For streamcluster ET favors 64KiB
translations over 2MiB, which reduces memory bloat.

Takeaway 4: The opportunistic design of CoalaPag-
ing keeps fault latency and memory bloat bounded while
supporting translation sizes beyond 2MiB.

VIII. RELATED WORK

Translation sizes and large pages. [66] propose HW and OS
modifications to support a wider range of translation sizes.
[8] study the effectiveness of 1GiB page sizes and design
mechanisms to make their transparent support practical. [67]
uses a mix of 2MiB and 1GiB pages to improve translation
overhead modeling. We focus on harnessing the performance
potential of the intermediate translation sizes enabled by TLB
coalescing on real HW. Transparent OS large page manage-
ment for the x86 architecture has been excessively studied for
both Linux and FreeBSD [3–7, 20, 68]. ET is orthogonal and
complementary to these works. ET alleviates fragmentation
pressure by reducing 2MiB page usage (Section VII), Addi-
tionally, ET 32MiB translations build upon THP fault-time
allocations, and are thus able to harness the improved THP
performance of prior art.
Memory contiguity. Previous research focuses on generat-
ing physical memory contiguity, which can be exploited by
novel HW components [10, 27] or used to improve THP

performance [9, 34, 49]. Our work builds upon opportunistic
allocation policies in the context of TLB coalescing.
Sampling-based profiling. [48] highlight the importance of
TLB misses for guiding translation size selection and propose
architectural extensions to accelerate scanning and promotion
and assist the OS in page size selection. Per-core caches
on the L2 TLB miss path track the number of misses per
recently accessed 2MiB and 1GiB region. The contents of
the caches are dumped to OS accessible memory at fixed
intervals. Besides requiring bespoke HW, this solution is diffi-
cult to generalize for multiple translation sizes, requiring one
cache per-size per-core. [69–73] use sampling-based profiling
for memory deduplication and tiering. We follow a similar
approach targeting translation performance, and corroborate
their findings regarding the practicality and accuracy of this
approach compared to page-based access frequency sampling.
Address Translation Hardware. Prior works improve transla-
tion performance via HW modifications [33, 74–85]. SpecTLB
[86] and SpOT [27] exploit predictable contiguous mappings
to speedup address translation. [41–43, 87] propose and im-
prove upon HW TLB coalescing. Solomon et al. [46] evaluate
the effectiveness of HW TLB coalescing on recent AMD
processors [44, 45]. HW coalescing can be used together with
OS-assisted coalescing to collectively reduce MMU pressure.
The page table structure has also been extensively studied
[32, 39, 40, 71]. Previous works have proposed new hashing-
based schemes [28, 29, 88, 89], range tables [35, 90] as
well as more radical changes [30, 31, 36, 91, 92] to the
virtual memory hardware. Our work retains the radix tree
structure and improves performance by enabling intermediate
translation sizes.

IX. CONCLUSION

We design and implement Elastic Translations (ET) to take
advantage of the extended range of translation sizes, supported,
via OS-assisted TLB coalescing, by ARMv8-A and RISC-V.
ET extend the OS memory manager to enable the transpar-
ent and opportunistic creation of intermediate-sized transla-
tions, both at fault time (CoalaPaging) and asynchronously
(CoalaKhugepaged) for both native and virtualized execution.
Leshy, a HW-assisted profiler, samples the TLB misses of ap-
plications at runtime, to estimate address translation overhead
and implements the ET policies for translation size selection
and drives the ET in-kernel mechanisms to optimally map the
application footprint to the multiple available translation sizes.
By leveraging multiple translation sizes and runtime profiling,
ET is able to significantly speed-up execution for memory
intensive workloads when compared to state-of-practice and
state-of-the-art, for both native and virtualized execution,
under varying levels of fragmentation.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and artifact evaluators
for their valuable feedback. This work was funded by the Eu-
ropean Union under Horizon Europe grant 101092850 (project
AERO).

13

https://aero-project.eu/

ARTIFACT APPENDIX

The artifact comprises a parent Git repository, hosted
on GitHub, which includes the necessary instructions
(README.md), scripts (scripts/), binaries (bin/, bench-
marks/), datasets (datasets/) and source code (src/) to build,
run and evaluate Elastic Translations. The source code for
each component is split into its own Git repository, which is
then included in the parent repository as a Git submodule.

ET is implemented on top of Linux v5.18.19. The et-linux
repository also includes our Hawkeye port to Linux v5.18.19
on arm64 and the kernel configs we used to evaluate ET and
Hawkeye for both native (Ampere Altra, NVIDIA GH200) and
virtualized (QEMU) scenarios. The Leshy profiler along with
various userspace tools and utilities (memory fragmentation
tool, ET userspace configuration utility, accessbit sampler, etc.)
are included in the etutils-rs repository. We also provide our
slightly modified QEMU and gperftools tcmalloc. Finally, we
include a repository with the v6.8rc Linux kernel source code
we used to evaluate mTHP (multi-sized THP).

We provide, in the parent repository, the source code for
the hashjoin, svm, btree, gups and bfs benchmarks we use in
the evaluation as well as a patch, to enable profiling, for the
PARSEC benchmarks we used (canneal and streamcluster).
The SPEC CPU benchmarks (astar, omnetpp) do not require
any modifications. We also include the scripts necessary to
download and create or prepare the input datasets for the can-
neal, svm and bfs benchmarks. To ease the initial evaluation,
we also provide pre-built images and binaries for the kernels,
userspace tools and the benchmarks as well as the prepared
datasets.

Using the provided scripts, one can prepare (scripts/pre-
pare.sh) the host for building, running and evaluating ET.
scripts/build.sh builds the ET, Hawkeye and mTHP kernels as
well as the userspace utilities and benchmarks. The compiled
artifacts are installed via scripts/install.sh. We also provide
scripts (scripts/run*.sh), which configure the host and run
the various evaluation scenarios. Finally, under scripts/plots/,
we provide scripts which aggregate, summarize and plot the
results, output from the aforementioned run scripts.

For the evaluation, an ARMv8.2+-A server is required.
The paper-reported results were obtained on an Ampere Altra
Mt.Jade 2-socket server with 80 Neoverse N1 cores and
256GiB of memory in each socket. For both native and
virtualized scenarios, we used Ubuntu Jammy 22.04. Results
might vary if a server with different ARM cores is used,
especially if the TLB size differs.

A. Artifact check-list (meta-information)

• Data sets: KDD12 for SVM, Friendster SNAP graph for
GAPBS/BFS, synthetically generated netlist for Canneal

• Run-time environment: Ubuntu Jammy 22.04
• Hardware: ARMv8.2+-A server, preferably one with

Neoverse N1 cores (e.g., Ampere Altra)
• Metrics: Cycles, L2 TLB misses, wall-clock time,

translation-size distribution

• Experiments: Native execution with and without frag-
mentation, virtualized execution without fragmentation

• How much disk space required (approximately)?:
100GiB

• How much time is needed to prepare workflow (ap-
proximately)?: 1hr

• How much time is needed to complete experiments
(approximately)?: 12hr

• Publicly available?: Yes, on GitHub
• Code licenses (if publicly available)?: GPLv2 (for

newly-developed code) and other free software and open
source licenses used by projects included in the artifact

• Archived (provide DOI)?: 10.5281/zenodo.13621499

B. Description

1) How to access: The artifact is hosted on GitHub. To
access it clone the repository and all of its submodules:

git clone --recurse-submodules
https://github.com/cslab-ntua/

elastic-translations-MICRO2024

We also provide a script and a VM artifact bundle, to
ease and speed-up the initial testing and evaluation phase.
scripts/install vm bundle.sh will download and extract the
artifact bundle, which includes a VM image (artifact.img),
under artifact vm bundle. run-vm.sh can be used to spawn
the QEMU VM. You can then access the VM either via the
QEMU console, using the credentials ubuntu / ubuntu, or by
SSHing to the VM:

ssh -p65433 ubuntu@localhost

using the same credentials. The artifact bundle also includes
an ED25519 SSH key pair. The public key is already installed
in the artifact bundle for both root and ubuntu users.

Finally, you can also use the run-vm-noefi.sh script,
for booting pre-built VM kernels directly from the host,
without booting to GRUB. The artifact bundle includes pre-
compiled VM kernels (ET, Hawkeye, vanilla) under kernels/.

2) Hardware dependencies: ET requires a machine with
ARMv8-A CPUs with support for the contig-bit in their
TLBs (cf. ARMv8-A architecture reference manual D8.6.1).
Additionally, Leshy requires support for the ARMv8.2-A Sta-
tistical Profiling Extension (SPE) (cf. ARMv8-A architecture
reference manual A2.14). The benchmarks have a maximum
memory footprint of 122GiB. For the paper, we used a 2-
socket Ampere Altra Mt.Jade server, with 80 Neoverse N1
(ARMv8.2+-A) CPUs and 256GiB memory in each socket.
We’ve also verified that ET run on NVIDIA Grace CPU
(ARMv9 Neoverse V2 cores) and provide the kernel config we
used to build and boot our kernel on a SuperMicro NVIDIA
GH200 server.

3) Software dependencies: For our evaluation, we used
Ubuntu Jammy (22.04) for both native and virtualized exe-
cution. We list and install the required packages for building
and running the artifact in scripts/prepare.sh.

14

https://github.com/cslab-ntua/elastic-translations-MICRO2024
https://github.com/cslab-ntua/et-linux
https://github.com/apanwariisc/HawkEye
https://github.com/cslab-ntua/etutils-rs
https://github.com/cslab-ntua/et-qemu
https://github.com/cslab-ntua/et-gperftools
https://github.com/cslab-ntua/linux-mthp
https://github.com/cslab-ntua/elastic-translations-MICRO2024/tree/et-micro-artifact/src/benchmarks
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/kdd12.xz
https://snap.stanford.edu/data/com-Friendster.html
https://github.com/cslab-ntua/elastic-translations-MICRO2024
https://doi.org/10.5281/zenodo.13621499
https://github.com/cslab-ntua/elastic-translations-MICRO2024

4) Data sets:
• SVM: KDD12
• BFS: Friendster SNAP graph, converted to a GAPBS-

ingestible (edgelist) format
• Canneal: synthetically generated netlist, created by the

(provided) script prepare canneal dataset.sh

C. Installation

The artifact scripts depend on the $BASE environmental
variable, which should point to the parent artifact repository. It
can be set either by directly editing the scripts or by exporting
it to the desired path, i.e.:

export BASE="/path/to/repo"

Then, inside the cloned parent repository run:

./scripts/prepare.sh
VM=1 KERNEL="et.full" ./scripts/build.sh
VM=1 KERNEL="et.full" ./scripts/install.sh
reboot

After installing and booting the desired kernel, one can
configure and run scripts/run test.sh to verify that everything
works.

./scripts/run_test.sh

Both build.sh and install.sh include knobs to configure
and build various Linux kernels and kernel configurations,
controlled by the $KERNEL and $VM environmental variables.
One can also navigate to the individual kernel, QEMU and
benchmark source directories and manually configure and
build each component as well as generate or download the
required datasets.

D. Experiment workflow

In order to evaluate ET, one would generally:
• configure, build and boot the required kernel (ET, Hawk-

eye, Vanilla), either via scripts/{prepare, build}.sh or
manually,

• use or modify any of the run scripts (scripts/run*.sh) to
run the experiment,

• analyze, parse and plot the results under results/{host,
vm} using the scripts under scripts/plots/.

E. Evaluation and expected results

For reproducing the paper evaluation results, the artifact
includes several run scripts:

• scripts/run-test.sh is a minimal script to test that
ET works. The script can be tweaked (via the env vari-
ables passed to bin/run.sh) to run different test scenarios.

• scripts/run-fig2-hugetlb.sh run the 64KiB and 32MiB
intermediate translation performance evaluation via
HugeTLB (Fig. 2). The script can be tweaked to change
the workloads that should be run ($BENCHMARKS), the
number of iterations for each workload ($ITER) and the
translation sizes to evaluate ($sizes). The script will

perform both native and virtualized runs, but either can
be commented out and skipped.

• scripts/run-fig15-pflat.sh generates the fault
latency CDF of Fig. 15. It requires a pfrace-
enabled kernel (CONFIG_PFTRACE). Note
that for the 64KiB and 32MiB non-ET fault
latencies, different kernels are required, compiled
with the CONFIG_ARM64_64K_PAGES and
CONFIG_ARM64_16K_PAGES options set respectively.

• scripts/run-fig14-multi.sh will run the three workload
mixes from Fig. 14. The $RUN variable controls whether
to do a baseline (4K), thp (THP) or an et (ET) run.
The script can be tweaked to evaluate different workload
mixes.

• scripts/run-fig10-virt.sh reproduces the virtualized exe-
cution results of Fig. 10. The $RUN variable controls
whether to do a baseline (4K), thp (THP), et (ET) or
a hwk (Hawkeye) run. Similarly to the other scripts,
the workloads ($BENCHMARKS), iterations ($ITER), and
other options can be tweaked as needed.

• scripts/run-eval-base.sh is the bulkiest script, which
can be used to reproduce the results from fig-
ures 8, 9, 11, 12, 13. Similarly to the other scripts,
the $RUN, $BENCHMARKS and $ITER variables can be
tweaked to change the parameters of the run. Addition-
ally, $FRAG_TARGET sets the FMFI target for the run
(e.g., 50% or 99%).

F. Experiment customization

The artifact’s main driving scripts are bin/run*.sh and
bin/prctl.sh. Each script can be configured via environmental
variables to e.g., run different ET or Hawkeye scenarios.
run.sh is the wrapper script which drives run-benchmarks.sh.
Finally, for Hawkeye and ET, run-benchmarks.sh will call
prctl.sh for ET and Hawkeye-specific configuration. The input
environmental variables for these scripts are documented at
the beginning of each script.

G. Notes

The ET Github repository includes an expanded artifact
appendix with more details on i) the methodology used for the
evaluation, describing the various tools and methods we used
to measure the performance of ET and ii) how to troubleshoot
ET, describing debugging tools and utilities that we used while
developing ET for functionality and regression testing.

REFERENCES

[1] A. Bhattacharjee, “Preserving Virtual Memory by
Mitigating the Address Translation Wall,” IEEE Micro,
2017. [Online]. Available: https://doi.org/10.1109/MM.
2017.3711640

[2] M. Talluri, S. Kong, M. D. Hill, and D. A.
Patterson, “Tradeoffs in Supporting Two Page Sizes,” in
Proceedings of the 19th ACM/IEEE Annual International
Symposium on Computer Architecture, 1992. [Online].
Available: https://doi.org/10.1145/139669.140406

15

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/kdd12.xz
https://snap.stanford.edu/data/com-Friendster.html
https://doi.org/10.1109/MM.2017.3711640
https://doi.org/10.1109/MM.2017.3711640
https://doi.org/10.1145/139669.140406

[3] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and
E. Witchel, “Coordinated and Efficient Huge Page
Management with Ingens,” in Proceedings of the 12th
USENIX Conference on Operating Systems Design
and Implementation, 2016. [Online]. Available: https:
//doi.org/10.5555/3026877.3026931

[4] A. Panwar, S. Bansal, and K. Gopinath, “HawkEye:
Efficient Fine-grained OS Support for Huge Pages,”
in Proceedings of the 24th ACM/IEEE International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2019. [Online].
Available: https://doi.org/10.1145/3297858.3304064

[5] M. Mansi, B. Tabatabai, and M. M. Swift, “CBMM:
Financial Advice for Kernel Memory Managers,” in
Proceedings of the 2022 USENIX Annual Technical
Conference, 2022. [Online]. Available: https://www.
usenix.org/conference/atc22/presentation/mansi

[6] W. Zhu, A. L. Cox, and S. Rixner, “A Comprehensive
Analysis of Superpage Management Mechanisms and
Policies,” in Proceedings of the 2020 USENIX Annual
Technical Conference, 2020. [Online]. Available: https:
//doi.org/10.5555/3489146.3489203

[7] T. Michailidis, A. Delis, and M. Roussopoulos,
“MEGA: Overcoming Traditional Problems with OS
Huge Page Management,” in Proceedings of the
12th ACM International Conference on Systems and
Storage, 2019. [Online]. Available: https://doi.org/10.
1145/3319647.3325839

[8] V. S. S. Ram, A. Panwar, and A. Basu, “Trident:
Harnessing Architectural Resources for All Page
Sizes in X86 Processors,” in Proceedings of the
54th Annual IEEE/ACM International Symposium
on Microarchitecture, 2021. [Online]. Available:
https://doi.org/10.1145/3466752.3480062

[9] K. Zhao, K. Xue, Z. Wang, D. Schatzberg, L. Yang,
A. Manousis, J. Weiner, R. Van Riel, B. Sharma, C. Tang,
and D. Skarlatos, “Contiguitas: The Pursuit of Physical
Memory Contiguity in Datacenters,” in Proceedings of
the 50th ACM/IEEE Annual International Symposium
on Computer Architecture, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589079

[10] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee,
“Translation Ranger: Operating System Support for
Contiguity-aware TLBs,” in Proceedings of the 46th
ACM/IEEE International Symposium on Computer
Architecture, 2019. [Online]. Available: https://doi.org/
10.1145/3307650.3322223

[11] M. Mansi and M. M. Swift, “Characterizing physi-
cal memory fragmentation,” https://arxiv.org/abs/2401.
03523, 2024.

[12] “Transparent Hugepage Support,” https://www.kernel.
org/doc/Documentation/vm/transhuge.txt.

[13] R. Roberts, “Multi-size THP for anonymous memory,”
https://lwn.net/Articles/954094/.

[14] R. Roberts, “Transparent contiguous PTEs for
User mappings”,” https://lore.kernel.org/linux-arm-

kernel/87fs0xxd5g.fsf@nvdebian.thelocal/T/.
[15] “HugeTLB Pages,” https://docs.kernel.org/arch/arm64/

hugetlbpage.html.
[16] “HugeTLBpage on ARM64,” https://www.kernel.org/

doc/html/latest/arm64/hugetlbpage.html.
[17] “libhugetlbfs,” https://github.com/libhugetlbfs/

libhugetlbfs.
[18] J. Navarro, S. Iyer, and A. Cox, “Practical, Transparent

Operating System Support for Superpages,” in Proceed-
ings of the 5th ACM SIGOPS Symposium on Operating
Systems Design and Implementation, 2002. [Online].
Available: https://doi.org/10.1145/844128.844138

[19] M. K. McKusick, G. V. Neville-Neil, and R. N. Watson,
The design and implementation of the FreeBSD operating
system. Pearson Education, 2014.

[20] A. Panwar, A. Prasad, and K. Gopinath, “Making
Huge Pages Actually Useful,” in Proceedings of the
23rd ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2018. [Online]. Available: https://doi.org/10.
1145/3173162.3173203

[21] Arm Architecture Reference Manual for A-profile ar-
chitecture, Rev. J.a, ARM Corporation, 2023, https://
developer.arm.com/documentation/ddi0487/latest/.

[22] The RISC-V Instruction Set Manual Volume II:
Privileged Architecture, RISC-V Foundation,
2021, https://wiki.riscv.org/display/HOME/RISC-
V+Technical+Specifications.

[23] T. Prickett Morgan, “AWS Adopts Arm V2
Cores For Expansive Graviton4 Server CPU,”
https://www.nextplatform.com/2023/11/28/aws-adopts-
arm-v2-cores-for-expansive-graviton4-server-cpu/.

[24] A. Vahdat, “Introducing Google Axion Processors, our
new Arm-based CPUs,” https://cloud.google.com/blog/
products/compute/introducing-googles-new-arm-based-
cpu, 2024.

[25] M. Awad, “Arm Collaborates with Microsoft on Cus-
tom Silicon to Unlock Sustainable, AI-Driven In-
frastructure,” https://newsroom.arm.com/news/microsoft-
custom-silicon-on-arm, 2024.

[26] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“KVM: the Linux Virtual Machine Monitor,” in In
Proceedings of the 2007 Ottawa Linux Symposium
(OLS’07), 2007. [Online]. Available: https://www.kernel.
org/doc/ols/2007/ols2007v1-pages-225-230.pdf

[27] C. Alverti, S. Psomadakis, V. Karakostas,
J. Gandhi, K. Nikas, G. Goumas, and N. Koziris,
“Enhancing and Exploiting Contiguity for Fast
Memory Virtualization,” in Proceedings of the
47th ACM/IEEE Annual International Symposium
on Computer Architecture, 2020. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00050

[28] D. Skarlatos, A. Kokolis, T. Xu, and J. Torrellas, “Elastic
Cuckoo Page Tables: Rethinking Virtual Memory
Translation for Parallelism,” in Proceedings of the
25th ACM International Conference on Architectural

16

https://doi.org/10.5555/3026877.3026931
https://doi.org/10.5555/3026877.3026931
https://doi.org/10.1145/3297858.3304064
https://www.usenix.org/conference/atc22/presentation/mansi
https://www.usenix.org/conference/atc22/presentation/mansi
https://doi.org/10.5555/3489146.3489203
https://doi.org/10.5555/3489146.3489203
https://doi.org/10.1145/3319647.3325839
https://doi.org/10.1145/3319647.3325839
https://doi.org/10.1145/3466752.3480062
https://doi.org/10.1145/3579371.3589079
https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/3307650.3322223
https://arxiv.org/abs/2401.03523
https://arxiv.org/abs/2401.03523
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://lwn.net/Articles/954094/
https://lore.kernel.org/linux-arm-kernel/87fs0xxd5g.fsf@nvdebian.thelocal/T/
https://lore.kernel.org/linux-arm-kernel/87fs0xxd5g.fsf@nvdebian.thelocal/T/
https://docs.kernel.org/arch/arm64/hugetlbpage.html
https://docs.kernel.org/arch/arm64/hugetlbpage.html
https://www.kernel.org/doc/html/latest/arm64/hugetlbpage.html
https://www.kernel.org/doc/html/latest/arm64/hugetlbpage.html
https://github.com/libhugetlbfs/libhugetlbfs
https://github.com/libhugetlbfs/libhugetlbfs
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3173162.3173203
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://wiki.riscv.org/display/HOME/RISC-V+Technical+Specifications
https://wiki.riscv.org/display/HOME/RISC-V+Technical+Specifications
https://www.nextplatform.com/2023/11/28/aws-adopts-arm-v2-cores-for-expansive-graviton4-server-cpu/
https://www.nextplatform.com/2023/11/28/aws-adopts-arm-v2-cores-for-expansive-graviton4-server-cpu/
https://cloud.google.com/blog/products/compute/introducing-googles-new-arm-based-cpu
https://cloud.google.com/blog/products/compute/introducing-googles-new-arm-based-cpu
https://cloud.google.com/blog/products/compute/introducing-googles-new-arm-based-cpu
https://newsroom.arm.com/news/microsoft-custom-silicon-on-arm
https://newsroom.arm.com/news/microsoft-custom-silicon-on-arm
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
https://doi.org/10.1109/ISCA45697.2020.00050

Support for Programming Languages and Operating
Systems, 2020. [Online]. Available: http://doi.org/10.
1145/3373376.3378493

[29] J. Stojkovic, D. Skarlatos, A. Kokolis, T. Xu, and
J. Torrellas, “Parallel Virtualized Memory Translation
with Nested Elastic Cuckoo Page Tables,” in Proceedings
of the 27th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, 2022. [Online]. Available:
https://doi.org/10.1145/3503222.3507720

[30] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and
M. M. Swift, “Efficient Virtual Memory for Big
Memory Servers,” in Proceedings of the ACM/IEEE
40th Annual International Symposium on Computer
Architecture, 2013. [Online]. Available: https://doi.org/
10.1145/2485922.2485943

[31] J. Gandhi, A. Basu, M. D. Hill, and M. M.
Swift, “Efficient Memory Virtualization: Reducing
Dimensionality of Nested Page Walks,” in Proceedings
of the 47th IEEE/ACM Annual International Symposium
on Microarchitecture, 2014. [Online]. Available: https:
//doi.org/10.1109/MICRO.2014.37

[32] T. Merrifield and H. R. Taheri, “Performance
Implications of Extended Page Tables on Virtualized
X86 Processors,” in Proceedings of the 12th ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, 2016. [Online]. Available:
https://doi.org/10.1145/2892242.2892258

[33] C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-
Schaffer, “Every Walk’s a Hit: Making Page Walks
Single-Access Cache Hits,” in Proceedings of the
27th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2022. [Online]. Available: https://doi.org/10.
1145/3503222.3507718

[34] A. Margaritov, D. Ustiugov, A. Shahab, and
B. Grot, “PTEMagnet: Fine-Grained Physical Memory
Reservation for Faster Page Walks in Public Clouds,” in
Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, 2021. [Online]. Available:
https://doi.org/10.1145/3445814.3446704

[35] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D.
Hill, K. S. McKinley, M. Nemirovsky, M. M. Swift,
and O. Ünsal, “Redundant Memory Mappings for
fast access to large memories,” in Proceedings of
the 42nd ACM/IEEE Annual International Symposium
on Computer Architecture, 2015. [Online]. Available:
https://doi.org/10.1145/2749469.2749471

[36] S. Gupta, A. Bhattacharyya, Y. Oh, A. Bhattacharjee,
B. Falsafi, and M. Payer, “Rebooting Virtual
Memory with Midgard,” in Proceedings of the
48th ACM/IEEE Annual International Symposium
on Computer Architecture, 2021. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00047

[37] I. Corporation, “5-Level Paging and 5-Level EPT

White Paper,” 2017. [Online]. Available: https://cdrdv2-
public.intel.com/671442/5-level-paging-white-paper.pdf

[38] CXL Consortium, “Compute Express Link Specifica-
tion Revision 2.0.” https://www.computeexpresslink.org/
download-the-specification, 2023.

[39] J. Gandhi, M. D. Hill, and M. M. Swift, “Agile Paging:
Exceeding the Best of Nested and Shadow Paging,”
in Proceedings of the 43rd ACM/IEEE International
Symposium on Computer Architecture, 2016. [Online].
Available: https://doi.org/10.1109/ISCA.2016.67

[40] R. Bhargava, B. Serebrin, F. Spadini, and
S. Manne, “Accelerating Two-Dimensional Page
Walks for Virtualized Systems,” in Proceedings
of the 13th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, 2008. [Online]. Available:
https://doi.org/10.1145/1346281.1346286

[41] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhat-
tacharjee, “CoLT: Coalesced Large-Reach TLBs,” in
Proceedings of the 45th Annual IEEE/ACM International
Symposium on Microarchitecture, 2012. [Online].
Available: https://doi.org/10.1109/MICRO.2012.32

[42] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H.
Loh, “Increasing TLB reach by exploiting clustering
in page translations,” in Proceedings of the 20th
IEEE International Symposium on High Performance
Computer Architecture, 2014. [Online]. Available: https:
//doi.org/10.1109/HPCA.2014.6835964

[43] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid TLB
coalescing: Improving TLB translation coverage under
diverse fragmented memory allocations,” in Proceedings
of the 44th ACM/IEEE Annual International Symposium
on Computer Architecture, 2017. [Online]. Available:
https://doi.org/10.1145/3079856.3080217

[44] Software Optimization Guide for AMD EPYC™ 7003
Processors, Rev 3.00, AMD, 2020, https://developer.amd.
com/resources/developer-guides-manuals/.

[45] M. Clark, “A new ×86 core architecture for the
next generation of computing,” in Proceedings of
the 2016 IEEE Hot Chips 28 Symposium, 2016.
[Online]. Available: https://doi.org/10.1109/HOTCHIPS.
2016.7936224

[46] E. H. Solomon, Y. Zhou, and A. L. Cox, “An Empirical
Evaluation of PTE Coalescing,” in Proceedings of
the 2023 IEEE International Symposium on Memory
Systems, 2023. [Online]. Available: https://doi.org/10.
1145/3631882.3631902

[47] A. L. Cox., “Medium-sized superpages on arm64 and
beyond,” https://www.freebsd.org/status/report-2022-04-
2022-06/superpages/, 2022.

[48] A. Manocha, Z. Yan, T. Esin, J. L. Aragón, N. David, and
M. Martonosi, “Architectural Support for Optimizing
Huge Page Selection Within the OS,” in Proceedings
of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, 2023. [Online]. Available: https:
//webs.um.es/jlaragon/papers/manocha MICRO23.pdf

17

http://doi.org/10.1145/3373376.3378493
http://doi.org/10.1145/3373376.3378493
https://doi.org/10.1145/3503222.3507720
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1145/2892242.2892258
https://doi.org/10.1145/3503222.3507718
https://doi.org/10.1145/3503222.3507718
https://doi.org/10.1145/3445814.3446704
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1109/ISCA52012.2021.00047
https://cdrdv2-public.intel.com/671442/5-level-paging-white-paper.pdf
https://cdrdv2-public.intel.com/671442/5-level-paging-white-paper.pdf
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://doi.org/10.1109/ISCA.2016.67
https://doi.org/10.1145/1346281.1346286
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1145/3079856.3080217
https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/
https://doi.org/10.1109/HOTCHIPS.2016.7936224
https://doi.org/10.1109/HOTCHIPS.2016.7936224
https://doi.org/10.1145/3631882.3631902
https://doi.org/10.1145/3631882.3631902
https://www.freebsd.org/status/report-2022-04-2022-06/superpages/
https://www.freebsd.org/status/report-2022-04-2022-06/superpages/
https://webs.um.es/jlaragon/papers/manocha_MICRO23.pdf
https://webs.um.es/jlaragon/papers/manocha_MICRO23.pdf

[49] W. Jia, J. Zhang, J. Shan, and X. Ding, “Making Dynamic
Page Coalescing Effective on Virtualized Clouds,” in
Proceedings of the 18th ACM SIGOPS European
Conference on Computer Systems, 2023. [Online].
Available: https://doi.org/10.1145/3552326.3567487

[50] Y. Zhou, A. L. Cox, S. Dwarkadas, and X. Dong,
“The Impact of Page Size and Microarchitecture
on Instruction Address Translation Overhead,” ACM
Trans. Archit. Code Optim., 2023. [Online]. Available:
https://doi.org/10.1145/3600089

[51] J. L. Henning, “SPEC CPU2006 Benchmark Descrip-
tions,” SIGARCH Comput. Archit. News, 2006. [Online].
Available: https://doi.org/10.1145/1186736.1186737

[52] C. Bienia, S. Kumar, J. P. Singh, and K. Li,
“The PARSEC Benchmark Suite: Characterization and
Architectural Implications,” in Proceedings of the 17th
International Conference on Parallel Architectures and
Compilation Techniques, 2008. [Online]. Available:
https://doi.org/10.1145/1454115.1454128

[53] S. Beamer, K. Asanović, and D. Patterson, “The gap
benchmark suite,” 2017.

[54] J. Yang and J. Leskovec, “Defining and evaluating
network communities based on ground-truth,” CoRR,
2012. [Online]. Available: http://arxiv.org/abs/1205.6233

[55] J. R. Tramm, A. R. Siegel, T. Islam, and
M. Schulz, “XSBench - the development and
verification of a performance abstraction for
Monte Carlo reactor analysis,” in PHYSOR 2014
- The Role of Reactor Physics toward a
Sustainable Future, Kyoto, 2014. [Online]. Available:
https://www.mcs.anl.gov/papers/P5064-0114.pdf

[56] “LibSVM,” https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/binary.html.

[57] “KDD’12 dataset,” https://www.kaggle.com/c/
kddcup2012-track1, 2012.

[58] “GUPS: HPCC RandomAccess benchmark,” https://
github.com/alexandermerritt/gups.

[59] “WiWynn Mt.Jade,” https://www.wiwynn.com/products/
19-inch/sv328r.

[60] Ampere® Altra® Rev A1 64-Bit Multi-Core
Processor Datasheet, Rev 1.40, Ampere Computing,
2023, https://amperecomputing.com/customer-
connect/products/altra-family-device-documentation.

[61] Arm® Neoverse™ N1 Core, Rev r4p1, ARM Corpo-
ration, 2023, https://developer.arm.com/documentation/
100616/0401/.

[62] M. Maas, D. G. Andersen, M. Isard, M. M. Javanmard,
K. S. McKinley, and C. Raffel, “Learning-based
Memory Allocation for C++ Server Workloads,” in
Proceedings of the 25th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, 2020. [Online]. Available:
https://doi.org/10.1145/3373376.3378525

[63] “gperftools,” https://github.com/gperftools/gperftools.
[64] M. Gorman and A. Whitcroft, “The what, the

why and the where to of anti-fragmentation,” in

Proceedings of the 2006 Ottawa Linux Symposium,
2006. [Online]. Available: https://www.kernel.org/doc/
ols/2006/ols2006v1-pages-369-384.pdf

[65] J. Corbet, “Large folios for anonymous memory,” https:
//lwn.net/Articles/937239/.

[66] F. Guvenilir and Y. N. Patt, “Tailored Page Sizes,” in Pro-
ceedings of the 47th ACM/IEEE International Symposium
on Computer Architecture, 2020. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00078

[67] M. Agbarya, I. Yaniv, J. Gandhi, and D. Tsafrir,
“Predicting Execution Times With Partial Simulations in
Virtual Memory Research: Why and How,” in Processors
of the 53rd Annual IEEE/ACM International Symposium
on Microarchitecture, 2020. [Online]. Available: https:
//doi.org/10.1109/MICRO50266.2020.00046

[68] F. Gaud, B. Lepers, J. Decouchant, J. Funston,
A. Fedorova, and V. Quéma, “Large Pages May Be
Harmful on NUMA Systems,” in Proceedings of the 2014
USENIX Annual Technical Conference, 2014. [Online].
Available: https://doi.org/10.5555/2643634.2643659

[69] F. Guo, Y. Li, Y. Xu, S. Jiang, and J. C. S. Lui,
“SmartMD: A High Performance Deduplication Engine
with Mixed Pages,” in Proceedings of the 2017 USENIX
Annual Technical Conference, 2017. [Online]. Available:
https://doi.org/10.5555/3154690.3154759

[70] T. Lee, S. K. Monga, C. Min, and Y. I. Eom,
“MEMTIS: Efficient Memory Tiering with Dynamic
Page Classification and Page Size Determination,” in
Proceedings of the ACM SIGOPS 29th Symposium on
Operating Systems Principles, 2023. [Online]. Available:
https://doi.org/10.1145/3600006.3613167

[71] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner,
N. Agarwal, P. Bhattacharya, C. Petersen, M. Chowd-
hury, S. Kanaujia, and P. Chauhan, “TPP: Transparent
Page Placement for CXL-Enabled Tiered-Memory,” in
Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, 2023. [Online]. Available:
https://doi.org/10.1145/3582016.3582063

[72] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter,
“HeMem: Scalable Tiered Memory Management for
Big Data Applications and Real NVM,” in Proceedings
of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, 2021. [Online]. Available: https:
//doi.org/10.1145/3477132.3483550

[73] P. Duraisamy, W. Xu, S. Hare, R. Rajwar, D. Culler,
Z. Xu, J. Fan, C. Kennelly, B. McCloskey, D. Mijailovic,
B. Morris, C. Mukherjee, J. Ren, G. Thelen, P. Turner,
C. Villavieja, P. Ranganathan, and A. Vahdat, “Towards
an adaptable systems architecture for memory tiering
at warehouse-scale,” in Proceedings of the 28th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume
3, ser. ASPLOS 2023, 2023.

[74] T. W. Barr, A. L. Cox, and S. Rixner, “Translation
Caching: Skip, Don’t Walk (the Page Table),” in

18

https://doi.org/10.1145/3552326.3567487
https://doi.org/10.1145/3600089
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1454115.1454128
http://arxiv.org/abs/1205.6233
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.kaggle.com/c/kddcup2012-track1
https://www.kaggle.com/c/kddcup2012-track1
https://github.com/alexandermerritt/gups
https://github.com/alexandermerritt/gups
https://www.wiwynn.com/products/19-inch/sv328r
https://www.wiwynn.com/products/19-inch/sv328r
https://amperecomputing.com/customer-connect/products/altra-family-device-documentation
https://amperecomputing.com/customer-connect/products/altra-family-device-documentation
https://developer.arm.com/documentation/100616/0401/
https://developer.arm.com/documentation/100616/0401/
https://doi.org/10.1145/3373376.3378525
https://github.com/gperftools/gperftools
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-369-384.pdf
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-369-384.pdf
https://lwn.net/Articles/937239/
https://lwn.net/Articles/937239/
https://doi.org/10.1109/ISCA45697.2020.00078
https://doi.org/10.1109/MICRO50266.2020.00046
https://doi.org/10.1109/MICRO50266.2020.00046
https://doi.org/10.5555/2643634.2643659
https://doi.org/10.5555/3154690.3154759
https://doi.org/10.1145/3600006.3613167
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/3477132.3483550
https://doi.org/10.1145/3477132.3483550

Proceedings of the ACM/IEEE 37th Annual International
Symposium on Computer Architecture, 2010. [Online].
Available: https://doi.org/10.1145/1815961.1815970

[75] C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-Schaffer,
and J. Huh, “Perforated Page: Supporting Fragmented
Memory Allocation for Large Pages,” in Proceedings
of the 47th ACM/IEEE Annual International Symposium
on Computer Architecture, 2020. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00079

[76] S. Ainsworth and T. M. Jones, “Compendia: Reducing
Virtual-Memory Costs via Selective Densification,” in
Proceedings of the 2021 ACM SIGPLAN International
Symposium on Memory Management, 2021. [Online].
Available: https://doi.org/10.1145/3459898.3463902

[77] J. H. Ryoo, N. Gulur, S. Song, and L. K. John,
“Rethinking TLB Designs in Virtualized Environments:
A Very Large Part-of-Memory TLB,” in Proceedings of
the ACM/IEEE 44th Annual International Symposium
on Computer Architecture, 2017. [Online]. Available:
https://doi.org/10.1145/3079856.3080210

[78] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot,
“Prefetched Address Translation,” in Proceedings of
the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019. [Online]. Available: https:
//doi.org/10.1145/3352460.3358294

[79] Y. Du, M. Zhou, B. R. Childers, D. Mossé,
and R. Melhem, “Supporting superpages in non-
contiguous physical memory,” in Proceedings of
the 21st IEEE International Symposium on High
Performance Computer Architecture, 2015. [Online].
Available: https://doi.org/10.1109/HPCA.2015.7056035

[80] M. A. Bender, A. Bhattacharjee, A. Conway, M. Farach-
Colton, R. Johnson, S. Kannan, W. Kuszmaul,
N. Mukherjee, D. Porter, G. Tagliavini, J. Vorobyeva, and
E. West, “Paging and the Address-Translation Problem,”
in Proceedings of the 33rd ACM Symposium on Paral-
lelism in Algorithms and Architectures, 2021. [Online].
Available: https://doi.org/10.1145/3409964.3461814

[81] D. Skarlatos, U. Darbaz, B. Gopireddy, N. S. Kim, and
J. Torrellas, “BabelFish: Fusing Address Translations for
Containers,” in Proceedings of the 47th ACM/IEEE
Annual International Symposium on Computer
Architecture (ISCA), 2020. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00049

[82] M.-M. Papadopoulou, X. Tong, A. Seznec, and
A. Moshovos, “Prediction-based superpage-friendly
TLB designs,” in Proceedings of the 21st IEEE
International Symposium on High Performance
Computer Architecture, 2015. [Online]. Available:
https://doi.org/10.1109/HPCA.2015.7056034

[83] G. Cox and A. Bhattacharjee, “Efficient Address
Translation for Architectures with Multiple Page
Sizes,” in Proceedings of the 22nd ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2017. [Online].

Available: https://doi.org/10.1145/3037697.3037704
[84] Y. Marathe, N. Gulur, J. H. Ryoo, S. Song, and L. K.

John, “CSALT: Context Switch Aware Large TLB,” in
Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, 2017. [Online].
Available: https://doi.org/10.1145/3123939.3124549

[85] S. Bergman, M. Silberstein, T. Shinagawa, P. Pietzuch,
and L. Vilanova, “Translation Pass-Through for Near-
Native Paging Performance in VMs,” in Proceedings of
the 2023 USENIX Annual Technical Conference, 2023.
[Online]. Available: https://www.usenix.org/conference/
atc23/presentation/bergman

[86] T. W. Barr, A. L. Cox, and S. Rixner, “SpecTLB:
A Mechanism for Speculative Address Translation,” in
Proceedings of the ACM/IEEE 38th Annual International
Symposium on Computer Architecture, 2011. [Online].
Available: https://doi.org/10.1145/2000064.2000101

[87] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee,
“Large Pages and Lightweight Memory Management in
Virtualized Environments: Can You Have It Both Ways?”
in Proceedings of the IEEE/ACM 48th International
Symposium on Microarchitecture, 2015. [Online].
Available: https://doi.org/10.1145/2830772.2830773

[88] K. Gosakan, J. Han, W. Kuszmaul, I. N. Mubarek,
N. Mukherjee, K. Sriram, G. Tagliavini, E. West, M. A.
Bender, A. Bhattacharjee, A. Conway, M. Farach-Colton,
J. Gandhi, R. Johnson, S. Kannan, and D. E. Porter,
“Mosaic Pages: Big TLB Reach with Small Pages,” in
Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, 2023. [Online]. Available:
https://doi.org/10.1145/3582016.3582021

[89] I. Yaniv and D. Tsafrir, “Hash, Don’T Cache (the
Page Table),” in Proceedings of the 2016 ACM
SIGMETRICS International Conference on Measurement
and Modeling of Computer Science, 2016. [Online].
Available: https://doi.org/10.1145/2896377.2901456

[90] D. Chen, D. Tong, C. Yang, J. Yi, and X. Cheng,
“FlexPointer: Fast Address Translation Based on Range
TLB and Tagged Pointers,” ACM Trans. Archit. Code
Optim., 2023. [Online]. Available: https://doi.org/10.
1145/3579854

[91] S. Haria, M. D. Hill, and M. M. Swift, “Devirtualizing
Memory in Heterogeneous Systems,” in Proceedings of
the 23rd ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2018. [Online]. Available: https://doi.org/10.
1145/3173162.3173194

[92] B. Suchy, S. Campanoni, N. Hardavellas, and P. Dinda,
“CARAT: A Case for Virtual Memory through Compiler-
and Runtime-Based Address Translation,” in Proceedings
of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2020. [Online].
Available: https://doi.org/10.1145/3385412.3385987

19

https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1109/ISCA45697.2020.00079
https://doi.org/10.1145/3459898.3463902
https://doi.org/10.1145/3079856.3080210
https://doi.org/10.1145/3352460.3358294
https://doi.org/10.1145/3352460.3358294
https://doi.org/10.1109/HPCA.2015.7056035
https://doi.org/10.1145/3409964.3461814
https://doi.org/10.1109/ISCA45697.2020.00049
https://doi.org/10.1109/HPCA.2015.7056034
https://doi.org/10.1145/3037697.3037704
https://doi.org/10.1145/3123939.3124549
https://www.usenix.org/conference/atc23/presentation/bergman
https://www.usenix.org/conference/atc23/presentation/bergman
https://doi.org/10.1145/2000064.2000101
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/3582016.3582021
https://doi.org/10.1145/2896377.2901456
https://doi.org/10.1145/3579854
https://doi.org/10.1145/3579854
https://doi.org/10.1145/3173162.3173194
https://doi.org/10.1145/3173162.3173194
https://doi.org/10.1145/3385412.3385987

	Introduction
	Background
	OS support for Large Pages
	OS-assisted TLB coalescing

	Motivation
	OS-assisted coalescing: Performance potential
	The conundrum of translation size selection

	Elastic Translations
	Transparent contiguous bit management
	Coalescing-aware Paging
	Coalescing-aware promotions
	Translation size selection policies

	Discussion
	Memory Management
	Architectural considerations

	Methodology
	Evaluation
	Native Execution
	Virtualized Execution
	External fragmentation
	Performance analysis
	Multi-workload experiments
	Overhead analysis

	Related Work
	Conclusion
	Artifact Appendix
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes

