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e A key to attain maximum parallel performance is predictive modeling
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e Traffic - parallelism or congestion

— job scheduling on large-scale systems

— code optimizations (e.g. hybrid MPl/OpenMP, message compression)
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e Message size - protocol changes

—performan -tunin runtim . .
performance auto-tuning at runtime e Distance - contention or

arallelism
C h a I l e n ges . . Network graph imagesf from: p
¢ et len-wikipedin. org/wikihiypercue (Hypercube) - e Processes per node - overlapping
e HPC applications have computation and communication phases. capacity or contention
- . . /
e Communication on large scale is affected by:
—the data volume Benchmarking - -
—the communication pattern e Non-blocking ping-pongs with MPI
—the programming model and communication primitives vortrom | © Multiple random pairs of processes
. ...tO/from ;Eher M | . |
: nodes AN e Various configurations of nodes
—the network architecture, protocols and topology <’ N\ 5
_ _ 9" XSt ZaN _— and processes per node
—the process mapping on the allocation XX A . .
....... Vo 9V B R A y ¥ W | e Random mixture of internode/
— ... who knows what else! T e -------- T c """""""""""""" e """" . intranode communication y
e Computation forecasting seems trivial compared to communication! Node i-1 Node i Node i+1 . Sendmessageto/
Approach
e Topology-agnostic modeling (trade accuracy for generality) Variable Selection
e Application-related model variables (easy to extract)
e Architecture-related model coefficients (hide complexity) _ : _ ~
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3. Model building with forward stepwise regression
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4. Multiple variable regression to compute model coefficients _
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E\Ialuatlon For the evaluation of our supervised-learning per-

formance model, we executed a parallel 3D Ja-

cobi, an iterative PDE solver. 3D Jacobi has a
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>0 munication primitives. We compared the actual
communication times against the communica-

tion times predicted with our supervised-learning
model and with the Hockney model:
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e Communication forecasting for applications with more intricate communication patterns

e Extend methodology for collective communication
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