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Motivation

.

•The greatest challenge in HPC is to attain petaflop performance on a
petaflop machine - and exaflop will be harder!

•Users tend to make overly optimistic assumptions about their applica-
tions’ scalability - execution results refute their expectations

•A key to attain maximum parallel performance is predictive modeling
- we need to know what to expect!

•Effective performance models for large-scale parallel applications can
be a valuable tool for decision-making at many levels:
– allocation and utilization of resources by users
– job scheduling on large-scale systems
– code optimizations (e.g. hybrid MPI/OpenMP, message compression)

for performance tuning and performance portability
– performance auto-tuning at runtime....

Challenges
.

•HPC applications have computation and communication phases.
•Communication on large scale is affected by:

– the data volume
– the communication pattern
– the programming model and communication primitives
– the node architecture
– the network architecture, protocols and topology
– the process mapping on the allocation
– ... who knows what else!

•Computation forecasting seems trivial compared to communication!....
Approach

.

•Topology-agnostic modeling (trade accuracy for generality)
•Application-related model variables (easy to extract)
•Architecture-related model coefficients (hide complexity)
•Prediction of the per-phase communication time
• Supervised learning (coefficient training with benchmark results)
....

Methodology
.

1. Benchmarking of the system
2. Variable selection with statistical analysis
3. Model building with forward stepwise regression
4. Multiple variable regression to compute model coefficients
5. Refinement of the model....

Execution Environment
.

We experimented on Vilje supercomputer at NTNU (#82 at Top500),
an SGI system of 1404 Intel Xeon E5-2670 dual eight-core nodes intercon-
nected with Infiniband FDR on an enhanced hypercube.
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Communication Data Flows

.
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Performance
Metrics

.
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Benchmarking

.
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Variable Selection

.
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Evaluation

.

..

1
6
x
1

1
6
x
2

1
6
x
4

1
6
x
8

1
6
x
1
6

3
2
x
1

3
2
x
2

3
2
x
4

3
2
x
8

3
2
x
1
6

6
4
x
1

6
4
x
2

6
4
x
4

6
4
x
8

6
4
x
1
6

1
2
8
x
1

1
2
8
x
2

1
2
8
x
4

1
2
8
x
8

1
2
8
x
1
6

2
5
6
x
1

2
5
6
x
2

2
5
6
x
4

2
5
6
x
8

2
5
6
x
1
6

Nodes x Procs/Node

0

0.01

0.02

0.03

0.04

0.05

C
o
m

m
u
n
ic

a
ti

o
n
 T

im
e
 (

s
)

MEASURED

PREDICTED-SUPERVISED LEARNING

PREDICTED-HOCKNEY

3D Jacobi - 128x128x128

.

1
6
x
1

1
6
x
2

1
6
x
4

1
6
x
8

1
6
x
1
6

3
2
x
1

3
2
x
2

3
2
x
4

3
2
x
8

3
2
x
1
6

6
4
x
1

6
4
x
2

6
4
x
4

6
4
x
8

6
4
x
1
6

1
2
8
x
1

1
2
8
x
2

1
2
8
x
4

1
2
8
x
8

1
2
8
x
1
6

2
5
6
x
1

2
5
6
x
2

2
5
6
x
4

2
5
6
x
8

2
5
6
x
1
6

Nodes x Procs/Node

0

0.05

0.1

0.15

0.2

0.25

0.3

C
o
m

m
u
n
ic

a
ti

o
n
 T

im
e
 (

s
)
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Future Work

.

• Improve model accuracy, by studying and modeling more complex features of communication
•Experiment on different systems and network topologies
•Communication forecasting for applications with more intricate communication patterns
•Extend methodology for collective communication
•Automate the performance modeling process and construct a generic, portable tool for performance prediction
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• Traffic - parallelism or congestion
• Message size - protocol changes
• Distance - contention or

parallelism
• Processes per node - overlapping

capacity or contention

.

• Non-blocking ping-pongs with MPI
• Multiple random pairs of processes
• Multiple messages per process
• Various configurations of nodes

and processes per node
• Random mixture of internode/

intranode communication

.Correlation:
0.88 . Correlation:

0.96. Correlation:
0.72.

Linear terms ofthe model: NetworkTraffic, Node Traffic,Process Traffic.

Interaction
Variables: Message

Size, Number of

Messages, Processes

Per Node

.

Min Error: -60%Max Error: 48%Mean Abs Error: 25%

.

Min Error: -37%Max Error: 39%Mean Abs Error: 17%

.

Min Error: -42%Max Error: 68%Mean Abs Error: 24%

.

For the evaluation of our supervised-learning per-
formance model, we executed a parallel 3D Ja-
cobi, an iterative PDE solver. 3D Jacobi has a
5-point stencil communication pattern with halo
exchanges of the 2D-faces.

..

Computation and communication
phases are discrete and communication is orches-
trated with MPI point-to-point non-blocking com-
munication primitives. We compared the actual
communication times against the communica-
tion times predicted with our supervised-learning
model and with the Hockney model:
tcomm = Latency+MessageSize/Bandwidth


